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This paper treats the problem of target recognition as a decision process.  The nature of the decision to be 

made has a direct bearing on the data gathered and the subsequent processing.  A key factor in the processing 

is the separability, i.e., the ability to distinguish, of radar images of similar but distinct objects.  A number of 

recognition algorithms are considered and their suitability for data sets of various types is discussed.  In 

addition some simple measurements of the transfer functions of two targets are considered.  Observation 

suggests that the examples have characteristics that may make them readily separable.  As with all recognition 

techniques the quality and quantity of training data available will place a limit on the performance of any 

recognition technique and this is discussed in the text.  The view is formed that a single technique is unlikely to 

be successful and several techniques cued by gross-features of the image may be more appropriate.   

    

Introduction 

Accurate and reliable target recognition is of critical 

importance in many military radar applications as 

well as a significant number of civilian surveillance 

scenarios.  The consequences of erroneous 

recognition can range from an inconvenience to 

catastrophic incidents involving unintended loss of 

life.  Unfortunately, robust target recognition is a 

complex and challenging task and further work 

across numerous radar application environments is 

required. 

 
Figure 1 Target Identification Abstract 

Framework 

 

The target identification process is a chain of linear 

and non-linear processes, as illustrated in Figure 1, 

resulting in a decision (or sequence of decisions) that 

allow the target classification to be deduced.  Care 

must be taken in the design of the processing chain 

to exploit information content to the maximum in 

order to make the most informed decision possible. 

 

The aim-point of current work at Cranfield is to 

develop techniques of information analysis to assess 

the performance bounds of target recognition. 

Decision Making and Separability 

The fundamental reason for gathering data is to 

make a decision.  The decision should determine 

what data is gathered, and to what precision.  

Therefore the fundamental Automatic Target 

Recognition limitation is:  What question is to be 

answered and is the information content of the data 

available sufficient? 

 

Each individual decision is a binary process.  A 

decision is easiest to make if the supplied 

information is unambiguous – e.g.  99:1 or 51:49.  

Can the decision be made with confidence, given the 

information available? 

 

The decision is made by assessing a feature vector 

which forms a concise summary of the observed data 

points from the target.  The feature vector is often 

multi-dimensional. 

 

For a decision making process, often the decision 

based on the observation of a single feature vector is 

considered.  If the final decision can be postponed 

until after multiple observations, either all of the 

data may be considered as one large feature vector, 

or the feature vectors may be smoothed (integrated) 

before the decision, or a binary integration of the 

decisions may be used to improve the observation.  

There is no reason why feature vectors with different 

structures and decision boundaries may not be 

gathered at each new time instant, based on the prior 

decisions made.  This process would lead to a tree 
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structure of decisions.  Structures of this type or 

similar are often applied in expert systems and 

Bayesian belief networks [1, 2] 

 

 
Figure 2.  Separability of Two Classes  

 

Figure 2 shows two target classes, A and B, that 

have been assessed using a 2-dimensional metric 

vector.  The ellipses bound all of the feature vectors 

that have been observed from a wide range of targets 

from classes A and B.  The classes are shown 

separated by a linear division plane (shown as a 

dotted line) at high signal to noise ratios.  However, 

the superimposed class regions at a lower SNR are 

only partially separable, with some ambiguity 

existing.  The linear decision plane shown is still the 

optimal decision solution, even though a definitive 

decision can never be made, given only one 

observation of the two-dimensional feature vector.  

It is also clear that the feature on the Y axis 

contributes very little as it is parallel to the decision 

plane.  All of the classification is performed by the 

feature on the X axis. 

 

If the classes are not totally separable, it is not 

possible to guarantee a clear decision: the decision 

becomes probabilistic, each class has a probability of 

occurring, given the feature vector. 

 

This argues for more complex decision boundaries 

giving A, B and indeterminate decisions.  The latter 

may be used to cue further testing. 

 

For a ‘clean’ decision, data points MUST be linearly 

separable, therefore data transforms may be 

required.  This raises two key questions:  

 

 How separable are the different classes and 

how will the separability degrade with 

measurement noise? 

 How sensitive are the separability 

transforms to different elements of the 

feature vector being obscured by clutter? 

 

 

A classic example is the detection of targets in 

coherent radar data.  At each range cell, the in-phase 

(I) and quadrature (Q) voltages are measured and a 

decision must be made as to whether there is a target 

present or only noise.  

 
Figure 3.  Cartesian Representations 

 

Figure 3 shows the probability density functions for 

the I and Q voltages for the noise and target-plus-

noise classes.  It is clear that both noise and target-

plus-noise have near-Gaussian density functions and 

overlap almost entirely being only partially 

separable in the very tails of the distributions.  

Classification is possible, but when plotted in the 2D 

plane, the threshold is a circular region.   

 

 
Figure 4.  Polar Representations 

 

In contrast, after a Cartesian-to-Polar transformation 

(Magnitude and Phase), the probability density 

functions shown in Figure 4 are obtained. 

 

It can be seen that the probability density function of 

the phase component is uniform and identical for 

both noise and target-plus-noise and thus they are 

totally inseparable on the basis of phase.  However, 

the probability density functions of the magnitude 

are partially separable with a linear decision plane.  

This is an example of transforming a convexly 
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separable problem to linear separability before the 

decision making step.    

 

The probabilities of correct and false classification 

describe the degree of separability possible with the 

decision boundaries employed.  If the appropriate 

decision boundaries are chosen (circular for 

Cartesian, linear for polar), the same classification 

results can be achieved for the same input data.  In 

practice however, either the noise or target returns 

(or both) may not be truly Gaussian in nature, and 

therefore after the polar transform, the phase 

component may not have a true uniform distribution 

and the polar transform approach will result in the 

rejection of some information as the phase is ignored 

in the decision making process. 

 

Transformations 

Tools exist that can help identify appropriate linear 

transformations.  Non-linear transformations are 

more difficult.  Often the classes remain only 

partially separable after the transformations. 

 
Figure 5.  Linear Transformation 

 

Any linear transformation can be represented as a 

matrix multiplication.  The generalised linear 

transform is shown in Figure 5.  A sequence of 

linear transformations can be represented as a single 

transformation. 

 

The dimensionality of the metric vectors can be 

increased or decreased (K>M, K=M, K<M).  

Ultimately K must equal the number of target 

classes.  If the rank of the transformation matrix is 

less than M, then information is lost (the transform is 

not invertible).   

 

Artificial Neural Networks 
As an example of a non-linear transformation system 

that can have its decision boundary adapted based on 

examples of feature vectors that are used for 

training, Figure 6 shows an artificial neural network 

or perceptron.  The perceptron uses a hard threshold 

in each neuron and provides a classification 

decision.   

 
Figure 6.  Separability characteristics for Various 

ANN 

 

Three different network structures are shown, along 

with the types of decision boundaries they can 

generate.  A single neuron provides a single linear 

separation plane and can only perform classification 

on problems with sufficient linear separability.  With 

one hidden layer, each neuron in the hidden layer 

can provide one linear separation plane.  The output 

neuron can then combine these linear planes 

(effectively a logical operation) to form a convex 

region and can handle linear or convexly separable 

data.  With two hidden layers, the first layer forms 

linear planes, the second layer then forms multiple 

convex regions based on the linear planes, and the 

output neuron can then form logical operations on 

the multiple convex regions.  As both union and 

intersection are valid, then multiple convex regions, 

non-convex regions, or regions with ‘holes’ in can 

be generated. 

 

The complexity of the neural network is the main 

factor in determining how well it will perform in a 

given situation.  With too few neurons in the layers, 

the network lacks the ability to form the complex 

structures it requires to partition the data set.  With 

more layers, the partitioning can become more 

complex, but at the expense of far more weights. 

 

If too many neurons are used in a hidden layer, the 

network may learn the training data exactly, but may 

not generalize (ie. The decision boundary fits the 

contours of the training data exactly) and therefore 

work only on the test data.  If too many layers are 
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used (allowing a very convoluted decision 

boundary), the network may learn to respond to 

noise within the training set, and again not provide a 

generalised response. 

 

The Venn diagram like form of Figure 2 illustrates a 

further point.  The modern form of the Venn 

diagram has an outer boundary signifying that the 

universe of discourse is finite.  It may be assumed 

that since the magnitudes of the features are also 

finite that attempts to increase the number of classes 

will reduce the number of disjoint spaces due to 

overlap.  Increasing the number of classes will 

reduce the separability. 

 

Empirical work [3] has shown that the best 

performance of a neural network occurs when the 

number of hidden nodes is equal to log2(T), where T 

is the number of training samples.  This value 

represents the optimal performance of the neural 

network as well as the optimal associated 

computational cost.  It has also been shown that the 

number of training patterns must be greater than the 

total number of separable regions in the input space 

[4].  In addition, in a d-dimensional space, the 

maximum number of regions that are linearly 

separable using H hidden nodes is given by 
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Practical Aspects of Target Features 

The above presented theory assumes that the feature 

sets of differing targets are disjoint or nearly so.  In 

practice this is not necessarily the case. 

 

 
Table 1.  Explanation of Features 

 
Van den Broek and Dekker [5] have taken ISAR 

data derived from 3 targets in a total of 16 

configurations at various aspect angles.  A total of 

11 features, Table 1, were extracted as pdfs from the 

data and the Kolmogorov-Smirnov distance between 

their cumulative distributions was calculated.  This 

is illustrated in  Figure 7 where the pdf of the ‘Area’ 

feature is shown. 

 

 
Figure 7.  Kolmogorov-Smirnov Distance 

 

 

 
 

Table 2.  Average Kolmogorov-Smirnov 

Distances 

 

The Kolmogorov-Smirnov distance is the maximum 

distance between the cumulative distribution 

functions of two pdfs.  A value of zero implies that 

the two distributions are identical, a value of one 

implies complete separability.  Table 2 shows the 

mean results.  As might be expected the distances for 

intra-class objects are small.  Unfortunately the 

interclass distances are less than 0.5 indicating that 

the objects may not be easily separable on the basis 

of this feature set. 

 

Figure 2 illustrated the separability problem.  The 

Kolmogorov-Smirnov (KS) distance is a practical 

indicator of separability. 

 

It may be commented that the features cited here are 

not necessarily unique to a given object and many do 

not capture shape or structure as would be used by a 

human operator. 

 



Hidden Markov Models 

 
 Figure 8.  Markov Chain 

 

The constituent element of a Hidden Markov Model 

(HMM) is the Markov chain, Figure 8, and can be 

used to model a sequential signal.  The circles in this 

figure represent the discrete states, i.e., sub-

elements, of the modelled signal and are associated 

with one or more time steps of the input.   

 

The model moves from one state to another at 

regular discrete intervals equal to the time interval of 

the processing.  The movement is random and is 

described by the transition probabilities assigned to 

each path option leaving the current state.  The 

signal may also remain in a given state and this is 

represented by the loops in the diagram.  The next 

state to be entered is dependent only upon the 

current model state and is not influenced by the 

sequence of states passed through to reach the 

current state.  This process is hence referred to as a 

first order Markov process. 

 

When the model is in a given state, it generates an 

output or observation, which will be a feature vector 

for a target recognition implementation.  The 

particular feature vectors output by the model are 

governed by a distribution which gives the 

probability that any set of feature values will be 

generated when the model is in the associated state.  

Only the feature vectors being output by the model 

are observable and the sequence of state transitions 

are hidden from the observer, hence the name 

Hidden Markov Model. 

 

HMM Probability Calculations 

Suppose that we have a set T of targets and a 

separate training set for each target.  An HMM is 

built for each target using the associated training set.   

 

The problem is to calculate the relative likelihood of 

each model emitting the observed sequence of 

feature vectors. If the HM model associated with the 

target, τ, has parameters, τ then when presented 

with a sequence of observations, σ, choose the target 

with the most likely model, i.e., 
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The model output for a complete target is the result 

of N state transitions and is equal to the number of 

feature vectors which represent the target.  If the 

identifier for the current model state is σm, where m 

denotes the current time step and the start state is B 

and the end state E, which are not associated with 

any feature vector, then transition probabilities from 

B to each permitted start state can be specified as 

well as transition probabilities from each permitted 

last state to the end of the target.  Hence the 

probability of the model emitting the complete 

sequence is: 
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In the above, σm is the mth
 element of the sequence σ, 

1m ms st


is the probability of a transition from state sm to 

sm+1 and  p(σm|sm) is the probability that the state sm 

could produce the feature vector σm. 

 

The preceding equation gives the probability of the 

model generating the observed features, taking into 

account all possible sequences of states.  

Determination of the relative likelihood of the target 

represented by the model being present can then be 

calculated using Bayes’ theorem.   
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p(σ) does not depend upon the model being 

considered and can be ignored.  In the recognition 

scheme, if the occurrence of all targets is equally 

likely, then p(τ) may also be ignored and identifying 

the target model that maximises p(σ|τ) is sufficient. 

 

HMM Training 

The training problem is determining how the 

parameters of the model (the probability 

distributions for the transitions and feature vector 



outputs) can be adjusted to maximise the probability 

that the model created the output sequence.  Training 

of a HMM is of critical importance to the 

recognition abilities of the model and requires a 

significant amount of training data.  Additionally, in 

order to gain optimal performance, the statistics of 

the training data must be representative of the target 

samples which will be provided as input during 

recognition. 

 

Gaussian Mixture Models 

In many HMM implementations the probability 

distribution associated with each state is provided by 

Gaussian Mixture Models (GMM) [6].  A Gaussian 

mixture is a weighted sum of Gaussian densities as 

illustrated in Figure 9 for a mixture of three single 

Gaussians. 

 
Figure 9.  Gaussian mixture composed of 3 

Gaussian pdfs 

 

Training a GMM to model a complex pdf requires 

adjustment of the number of Gaussians, the weights 

and the means and covariances of each Gaussian pdf 

in an iterative manner until an optimal fit of the 

GMM to the training data is achieved.  This training 

normally uses the expectation-maximization (EM) 

algorithm [7] ans yields a Maximum Likelihood 

(ML) estimate of the distribution parameters.   

 

Applying HMMs to Target Recognition 

HMMs are particularly suited to the processing of 

sequential data.  As such they have found 

applications in speech processing and face 

recognition.  They may also be applied to radar 

imaging if data ordering is used to convert the 2D 

spatial image representation into a sequential 

representation.  Such a representation avoids the 

need for fully connected 2D HM models, which are 

exponentially complex in the size of the image and 

require intensive amounts of training data [8]. 

  

Target Identification and Optimised Illumination 

Bell [9] has investigated the optimisation of radar 

target illumination from an information- theoretic 

viewpoint for both target detection and target 

identification.  The key concept is that of the target 

impulse response, the Fourier Transform of the 

target frequency response for all frequencies.  . 

 

The conclusion of the work was that for optimum 

detection radar power should be concentrated at 

those frequencies which gave the greatest return 

whilst for optimum information for identification 

greater power should be transmitted at those 

frequencies where the return is weak than where the 

return is strong.  The argument is that information is 

contained in these areas and by raising the signal 

power a signal to noise ratio approaching that of the 

strong areas can be obtained with a consequent 

reduction in uncertainty. 
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Figure 10.  Transfer Functions for Test Targets 

 

A recent Cranfield MSc., project investigated 

matched illumination and contains information that 

may be usefully applied to target identification [10].   

 



The project used a Vector Network Analyser (VNA), 

in the reflection coefficient mode to measure the 

frequency response of two different types of test 

target.  The targets were 1/32
nd

 scale models of a 

main battle tank and a farm tractor and were 

measured in the 90GHz region.  Target classification 

was not the aim but the difference between the 

transfer functions, particularly in the zeroes which 

are strongly evident in Figure 10, could represent a 

first step in the classification of a target.  Although 

only two widely differing targets have been 

examined the results suggest that a wider 

investigation would be worthwhile. 

 

The measured results were used in a matched 

illumination simulation.  Since it is not easily 

feasible to amplitude modulate a pulsed radar 

transmission to produce the required matched 

illumination a ‘matched energy’ approach was used.  

A constant amplitude frequency sweep with a 

variable rate such that a long dwell occurred on 

those frequencies that gave the strongest returns was 

used.  Improvements in the return amplitude 

compared with a simple pulse of up to 20dB were 

observed.   

 

The optimum waveform for identification could be 

obtained in a similar manner in that the sweep rate 

could be reduced over the low amplitude return 

frequencies.  The action would be analogous to 

reducing the transmission rate in a noisy channel to 

obtain a ‘clean’ transmission in accordance with the 

Shannon-Hartley Theorem. 

 

Concluding Remarks 

No one method of identification will be adequate 

under all circumstances and for all targets. Bespoke 

feature vectors are necessary, and the feature vector 

may need to be altered, depending on the anticipated 

target set. 

 

No one type of sensor will be adequate under all 

circumstances, if a sensor cannot provide data such 

that the target set appears separable, then no reliable 

classification can be made 

 

Rules for method/sensor cueing are required to allow 

the best sensor to be directed at the target set.  It may 

even require man-in-the-loop as one of the sensors if 

human identification cannot be surpassed under 

certain conditions. 

 

The impact of noise/clutter degradation on 

separability must be established for any fielded 

system to ensure that accurate misclassification 

probability can be controlled. 

 

Bounds, analogous to Cramer-Rao, on target 

separability need to be established to allow 

algorithms to be compared to a realistic reference. 

 

References 

1. Tsang, C., Woo, M., Bloor, C.,  An Object 

Oriented Intelligent Tourist Advisor System, 

Proc., Australian and New Zealand Conf., on 

Intelligent Information Systems, pp.6-9, 1996 

2. Schuller, B., Muller, R., Rigoll, G., Lang, M., 

Applying Bayesian Belief Networks in 

Approximate String Matching for Robust 

Keyword-Based Retrieval, Proc., ICME 2004, 

Vol., 3, June 2004, pp., 1999-2002 

3. Wanas, N., et al., On the Optimal Number of 

Hidden Nodes in a Neural Network, Proc., IEEE 

Canadian Conf., on Elec., and Computer Eng., 

1998, Vol., 2, pp., 918 – 920 

4. Mirchandani, G., Cao, W., On Hidden Nodes for 

Neural Nets, IEEE Trans., on Circuits and 

Systems, Vol., 36 No., 5, May 1989 

5. van den Broek, A., Dekker, R., Target 

discrimination in polarimetric ISAR data using 

robust feature vectors, SET-096 / MATRIX 

2005, Robust Acquisition of Relocatable Targets 

using MMW Sensors, NATO School, 

Oberammergau, May 2005 

6. Day, N., Estimating the Components of a 

Mixture of Normal Distributions, Biometrika, 

Vol., 56, No.  3, Dec., 1969, pp.  463-474  

7. Dempster, A., Laird, N., Rubin, D., Maximum 

Likelihood from Incomplete Data via the EM 

Algorithm, J.  Royal Statistical Society, Series 

B, Vol., 39, No., 1, 1977, pp.  1-38 

8. Kottke, D., Fwu, J., Brown, K., Hidden Markov 

Modeling for Automatic Target Recognition, 31
st
 

Asilomar Conf., on Dignals, Systems and 

Computers, Vol., 1, 1997, pp.  859 – 863 

9. Bell, M., Information Theory and Radar: 

Mutual Information and the Design and Analysis 

of Radar Waveforms and Systems, PhD Thesis, 

CIT, Pasadena, Calif., 1988 

10. Soldani, F., Matched Illumination, MSc., Thesis, 

Cranfield University, 2006 


