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Medium PRF Set Selection Using Evolutionary
Algorithms

Philip G. Davies, Evan J. Hughes

Abstract—This paper presents a new and novel method of selecting mul-

tiple Pulse Repetition Frequency (PRF) sets for use in Medium PRF pulsed-

Doppler radars. Evolutionary algorithms are used to minimise the blind ar-

eas in the range/Doppler space. The evolutionary algorithm allows optimal

solutions to be generated quickly, far faster than with exhaustive searches,

and is fully automatic, unlike existing techniques. The evolved solutions

compare very favourably against the results of both an exhaustive search

and existing published PRF set selection methods. This evolutionary ap-

proach to generation of PRF sets is a major advance in medium PRF radar

design.

Keywords— Medium PRF Radar, Pulsed-Doppler Radar, Evolutionary

Algorithms.

I. INTRODUCTION

PULSED-DOPPLER radars operating in the medium PRF

regime have been widely used in the last 30 years. With

medium PRF systems, target returns are ambiguous in both

range and Doppler frequency. To resolve these ambiguities it

is necessary to use a transmitted waveform containing multiple

PRFs.

The selection of the set of PRFs used in such waveforms re-

mains even now something of a black art, due to the large solu-

tion space and the interdependence of the variables. Even one of

the most recent methods proposed [1] is only able to find locally

optimal solutions for half of the PRF set, the other half must be

specified. In the past, the major factor that determined which

PRF set is chosen has been decodeability. Techniques such as

the Chinese remainder theorem [2] have been used, but for ef-

ficient operation, many constraints must be applied to the PRF

set. With the power of modern processors however, the ‘brute

force’ approach of coincidence lists, where the returns in each

of the PRFs are overlaid and a search is performed for overlap-

ping detections, allows a much wider choice of PRF [3]. This

removes many of the constraints and so blind zone performance

can now be a factor driving PRF set selection.

Evolutionary Algorithms have been shown to be useful in

solving this type of combinatorial problem for other engineering

applications, and have been used in this application to find the

globally optimal set of PRFs, with no prior choice for any part

of the PRF set needed. This fully automated system opens the

door to selecting the optimal PRF set on-line to suit the current

scenario and is a major advance in medium PRF pulsed-Doppler

radar.

Evolutionary algorithms [4] have been developed by applying

Darwin’s theories of evolution and survival of the fittest to solve

engineering problems. Their use is becoming widespread in

many engineering (and other) applications. Evolutionary algo-

rithms are less prone to getting stuck on local optima and more
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likely to find a global optima than conventional search methods.

Section 2 describes the problems associated with medium

PRF radar and how the different PRF sets are classified. Sec-

tions 3&4 describe the ideas behind evolutionary algorithms and

the specific algorithm used. Section 5 describes the results of the

optimisation process, and section 6 concludes.

II. MEDIUM PRF RADAR

The prime motivation in using pulsed-Doppler radar is to en-

able targets to be discriminated from the very large clutter re-

turns present when the antenna main beam and side-lobes are

incident on the ground. Designers are forced to accept the com-

plexities inherent in medium PRF waveforms to gain good all-

aspect performance in this ‘look-down’ situation. Morris [5]

covers pulsed-Doppler techniques in depth. A typical radar of

this type is the British Blue Vixen radar as fitted to the Sea Har-

rier which came into service in the early 1990s [6].

In airborne systems, main lobe clutter is the overwhelming re-

turn from the ground in the antenna main beam. This return has

a spread of Doppler frequencies caused by the different relative

velocities of the ground in the main beam footprint and repeats

in the Doppler frequency domain at intervals of the PRF, while

existing at all ranges due to the range ambiguities. Side lobe

clutter gives returns from the ground at all Doppler frequencies

up to ±the platform velocity due to the side lobes of the an-

tenna. The strongest return is from directly below the platform

and repeats in time at multiples of the pulse repetition interval.

As the pulse length is a significant fraction of the PRI, the radar

will be blind during the time when subsequent pulses are being

transmitted, often called eclipsing. Eclipsed regions repeat in

time at intervals of the PRI. These three effects overwhelm re-

turns in certain bands of Doppler frequencies and ranges, caus-

ing so called blind regions where targets cannot be detected. The

spread and locations of the blind regions vary with platform alti-

tude, forward velocity, carrier frequency and antenna angle. For

a tracking radar, ambiguities in either range or Doppler may be

acceptable, as long as an established track can be used to resolve

the ambiguities. In surveillance radar, both ambiguities have to

be resolved.

To resolve the ambiguities in range and Doppler, multiple

PRF waveforms are required, each PRF in the set having the

blind regions appear at different locations within the range and

Doppler space. Therefore, the problem is to select a set of PRFs

such that all ranges and Doppler frequencies that the radar must

cover fall in a clear region for at least the several PRFs that are

needed to resolve the ambiguities in range and Doppler. In prac-

tice, to achieve satisfactory detection probabilities and ranges,

three or more PRFs are required to be clear for any one target

to ensure the ambiguities can be resolved. In a practical radar, a



number of sets of PRF schedules maybe generated for different

altitudes, velocities, and antenna scan positions. The set for the

conditions closest to the current scenario is then chosen as the

operating set.

The most common method of assessing the suitability of a

PRF set is known as a blind zone map. It is a plot of all Doppler

frequencies of interest against all ranges of interest, showing in

its simplest form, all the areas of this range/Doppler space that

are not covered by enough PRFs to detect the target reliably and

are therefore said to be blind to it. Both Doppler frequency and

range are effectively quantised in a real design resulting in a

blind zone map that can be conveniently modelled as a matrix

of cells. The objective of this study was to minimise the total

number of blind cells. Figure 1 shows a blind zone map for 8

different PRFs, with the black areas indicating where there are

less than three PRFs clear and therefore the radar is blind.

Blind Zone Map

Velocity Cells (Frequency = *100 Hz)

R
an

ge
 C

el
ls

 (
R

an
ge

 =
 *

 1
50

 m
)

20 40 60 80 100 120 140 160 180 200

100

200

300

400

500

600

700

800

900

1000

Fig. 1. Typical 3 of 8 PRF blind-zone map

The way that this is commonly achieved is known as an M of

N scheme whereby a set of N PRFs are chosen with the aim that

at least M different PRFs will be able to see a target anywhere in

the range/Doppler space. Detections in these M PRFs can then

be used to resolve the ambiguities [5]. A common choice for M

and N is 3 of 8. With a 3 of 8 scheme, the PRFs can be calcu-

lated such that the ambiguous repetition of the main beam clut-

ter notch is offset by 1

4
of the notch width for each PRF, starting

with the highest frequency and working down. While this en-

sures all Doppler frequencies of interest are covered by at least 4

PRFs, the coverage of these PRFs in range is found only by trial

and error. It is not thought possible to calculate directly an opti-

mum solution. The map in Fig. 1 is for a 3 of 8 scheme generated

using the M of N method. The corresponding PRIs in terms of

pulse widths are [ 50 53 55 58 61 64 68 72 ].
For the purposes of this study, a model of an airborne pulsed-

Doppler radar was used. The model parameters are based on the

radar model used by Simpson [7], which although simplified

in some ways, represents typical characteristics and parameters.

See [8] for full details of the problem definition and implemen-

tation. The simplified model assumes that the blind zone map

is normalised to centre the main-beam Doppler return around

zero Hertz, and that the sidelobe return from the ground directly

below the platform appears immidiately after the region blinded

by eclipsing.

The radar parameters are based on an X-band airborne pulsed-

Doppler medium PRF mode airborne fire control radar with the

main parameters summarised in Table I. In the system used by

Simpson, the Pulse Repetition Intervals (PRIs) were all an in-

teger multiple of the pulse width (1 range cell). The upper and

lower bounds on the available PRI set are often limited by sys-

tem constraints [3]. Therefore with the radar parameters used,

each PRF will be one of 47 discrete values (PRI of 50 pulse

widths for highest PRF, to PRI of 96 pulse widths for lowest

PRF). With a 3 of 8 scheme, the eight PRFs needed will result

in a search space of 3.14× 108 possible PRF sets.

TABLE I

SUMMARY OF RADAR CHARACTERISTICS

Parameter Value

Frequency 10 GHz

Wavelength 3 cm

Min PRF freq. 10.4 kHz

Max PRF freq. 20.0 kHz

Pulse width 1µS
Range bin size 150 m

The blind range due to side lobe clutter and eclipsing is sim-

ulated by blinding a total of 11 cells at repetitions of the PRI

in range (1 cell for eclipsing, 10 cells for sidelobe clutter). The

main clutter notch is simulated by blinding 3.4 kHz (±25.5m/s)

at every repetition in frequency and corresponds to ±17 cells at

multiples of each PRF. The simulation was performed for 1000

150-metre range cells and 200 100Hz velocity cells giving a to-

tal region of 150km and 20kHz (=300 m/s). The unavoidably

blind regions in range and Doppler beginning at cell zero are

not included in the calculation of the blind area. The blind zone

map is generated using a 1000×200 element array to record how

many PRIs are blind in each cell. For each PRI, a corresponding

array containing zeros for clear areas and ones for blind areas

is added onto the main blind zone map array. Figure 2 shows

a typical single PRI blind map. After the blind areas from all

the PRIs have been accumulated, cells with more than 5 of the 8

PRIs blind are declared as being blind.

To allow range and Doppler ambiguities to be resolved prop-

erly, the PRF set chosen must be fully decodeable. To ensure de-

codeability, the lowest common multiple of any triplet of PRIs

(and PRFs) must be outside of the space of interest in range

(and Doppler). For example, PRIs of 50µS, 60µS and 80µS
have a lowest common multiple of 1200µS which is beyond

the 1000µS range cell space of interest and therefore the triplet

is decodeable in range. In an 8 PRI set, there are 56 possible

triplets that all need to be decodeable in both range and Doppler

for the complete set to be acceptable. In this paper, decode-

ability has not been included as a constraint on the evolutionary

algorithm.
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Blind Zone Map for PRI 96
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Fig. 2. Blind Map for PRI 96µS

III. EVOLUTIONARY ALGORITHMS

Evolutionary Algorithms are designed to mimic the natural

selection process through evolution and survival of the fittest. A

population ofP independent individuals is maintained by the al-

gorithm, each individual representing a potential solution to the

problem. Each individual has one chromosome. This is the evo-

lutionary description of the solution and may be broken into n
sections called genes. Each gene represents a single evolveable

parameter in the problem.

The three simple operations found in nature, natural selection,

mating and mutation are used to generate new chromosomes and

therefore new potential solutions. Each individuals’ chromo-

some is evaluated at every generation using an objective func-

tion that is able to distinguish good solutions from bad ones and

to score their performance. In this paper, the objective function

is the total blind area that is generated by the PRF set described

by a chromosome passed to the objective function.

With each new generation, some of the old individuals die

to make room for the new, improved offspring. Over several

generations, the majority of the solutions represented by the in-

dividuals in the population will tend to lie around an optimal

solution for a given environment. The exact rate at which the

population converges to a single solution is determined by the

nature of the problem and the structure of the evolutionary al-

gorithm. The evolutionary process can be described by the flow

diagram in Fig. 3.

When used to solve numerical optimisation problems, evolu-

tionary algorithms that have a large population tend to search

areas spread across the entire optimisation surface before con-

verging on a maximum or minimum depending on the problem.

Thus, despite being very simple to code, requiring no directional

or derivative information from the objective function and be-

ing capable of handling large numbers of parameters simulta-

neously, evolutionary algorithms can achieve excellent results.

A good introduction to evolutionary algorithms can be found

in [9].

Evaluate
Population

Create
Initial

Population

Select
Best

Solutions

Crossover
and

Mutate

Y

N

Finished?
PRF set
is best

solution

Fig. 3. Flow diagram of the evolutionary algorithm

IV. ALGORITHM CONSTRUCTION

In the problem described in this paper, the set of parameters is

the set of PRFs chosen. Thus the algorithm will strive to evolve

the best set of PRFs that minimise the total blind area.

The evolutionary algorithm used encodes each of the PRF

sets into a binary string (the chromosome). Each PRF of a set

is generated from a corresponding 6 bit binary sequence from

the chromosome. Unfortunately, the 47 possible choices for the

PRF do not fit neatly into binary as a 6 bit representation has 64

possible values. Therefore if the decoded decimal equivalent of

the binary representation is greater than 47, it is just set to be 47

before evaluating the objective function. With 8 PRFs and 6 bits

per PRF, each chromosome contains 56 bits in total in order to

describe one complete PRF set.

The number of blind cells is used to determine which solu-

tions are the best. The lower the number of blind cells the bet-

ter. The fitness value of each chromosome is assigned according

to the rank position of the individual. The individual with the

greatest objective value (least fit) is assigned a rank position of 1

and the best individual is assigned a rank positionP . The ranked

positions can then be used to generate probabilities that each of

the chromosomes will survive to pass into the next generation.

This allows the better solutions to generate more offspring. A

technique called Stochastic Universal Sampling [4, Page 12] is

used to select P individuals at random from the population for

breeding, based on the previously derived probabilities of sur-

vival.

The individuals selected are paired up for breeding. Breeding

pairs are chosen at random to ensure a good evolutionary mix. A

method of generating new chromosomes is used called Single-

Point Crossover [4, Page 12]. Two new offspring are generated

from each pair of parents by swapping sections of their chro-

mosomes. With a 70% chance of crossover, crossover operates

by choosing randomly a position in one parent’s chromosome,

dividing it into two sections. The second parent’s chromosome

is then also divided at the same position. The chromosomes of
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the two parents’ may now be represented as the strings of genes

[a1 a2] and [b1 b2]. The chromosomes of the two offspring may

now be defined as [a1 b2] and [b1 a2]. After crossover, mutation

is applied by flipping bits with a probability of 0.05.

The new chromosomes are all evaluated in the objective func-

tion and the best 90% replace the worst 90% of the parent popu-

lation. The algorithm is terminated after 50 generations and the

best individual overall is recorded as the solution. The choice

of 50 generations was arrived at empirically as most runs ap-

peared to have converged satisfactorily by then. More genera-

tions could be used, but little benefit may be gained as the re-

sults found after 50 generations are likely to be sufficient (see

section V). A population of either P = 100 or P = 200 indi-

viduals was used for the experiments, therefore giving 5000 and

10000 objective calculations respectively for each run of the al-

gorithm.

V. RESULTS

The experimental approach used was to generate solutions us-

ing an evolutionary algorithm and then to attempt to validate

these results by conducting exhaustive searches of the solution

space to find the actual global optimum and other near optimum

solutions. This process was undertaken for both 3 of 5 and 5 of 7

schemes using otherwise equivalent parameters and constraints.

This validation process then gave confidence that the results pro-

duced by the evolutionary algorithm for a practical example 3 of

8 scheme were likely to be optimum (or near optimum), as the

8 PRF exhaustive search was too large to be undertaken as part

of this work. These solutions could then be compared against

other published methods of set selection.

The exhaustive search was performed on the University’s SGI

Cray Origin 2000 supercomputer. For the 5 PRF problem, there

are 1.53×106 possible combinations to try, taking a trivial time.

However, using half the Cray’s processors the 7 PRF problem

has 6.29× 107 combinations and takes about 3 days processing,

rising to two and a half weeks for the 8 PRF problem’s 3.14×108

combinations. Ten independent runs of the evolutionary algo-

rithm on each of the three set sizes were used in order to try and

estimate the probability of finding good solutions.

For the 5 PRF problem, the smaller population size of 100

individuals was used for 50 generations. The evolutionary ap-

proach could identify the global optimum solution in 8 out of

the 10 runs, leading to an estimated 6250 evaluations needed to

achieve the optimum solution, a massive saving over the exhaus-

tive search. The number of blind cells though is quite high for a

3 of 5 system.

For the 7 PRF problem, a population size of 200 was used for

50 generations. The global optimum was identified in 2 out of

the 10 runs, leading to an estimated 50000 evaluations needed

to achieve the optimum solution, again a massive saving. The

number of blind cells for the optimum solution of the 3 of 7

strategy is less than for the 3 of 8 system designed with the M

of N method noted in section II.

The performance of the evolutionary algorithm on the 3 of

7 system suggests that for the 8 PRF problem, the evolution-

ary method may be capable of identifying the optimum solution

in a very reasonable number of objective function evaluations,

when compared to an exhaustive search. Using the published

M of N method to calculate PRF sets, we could not identify

the global optimum (based on better results found by the evo-

lutionary method). The results were, however, reasonable. The

evolutionary approach can identify solutions as good as the M

of N approach very quickly indeed.

In the runs where the evolutionary algorithms did not find the

global solution for the 5 and 7 PRF trials, the solutions they

found were all very good. Table II shows the grouping of the

results.

TABLE II

SUMMARY OF TRIAL STATISTICS

Result rank 5 PRF (%) 7 PRF (%)

Global optimum 80% 20%

In best 10 100% 20%

In best 100 100% 80%

For the 8 PRF problem, again a population size of 200 was

used. This may lead to a sub-optimal solution though as the

7 PRF problem had only a 20% probability of finding the so-

lution with the same algorithm. The total avoidable blind area

(area excluding first main-beam clutter notch and first eclipse

and sidelobe clutter) of the best solution found by the evolution-

ary algorithm is 305, 25 times less than that found by the M of

N method. With a larger population and more generations, the

probability of finding solutions as good as the best found so far

will increase. The best found so far is shown in Fig. 4, compared

to the M of N plot of Fig. 1. The corresponding PRIs in terms

of pulse widths are [ 51 53 60 63 67 84 89 93 ].

Blind Zone Map for PRIs [51 53 60 63 67 84 89 93], 305 cells blind
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Fig. 4. Blind-zone map for 8 PRFs found by evolution

The blind zone performance in terms of the number of cells

that are blind are shown in Fig. 5 for six different PRF selection

strategies. The major/minor method is an old system [5] and

uses 9 PRFs, the M of N method uses 8 PRFs, the result found by

Simpson [7] [ 51 57 63 66 69 78 90 96 ], and the

three evolutionary methods, with 5, 7 and 8 PRFs respectively.

Although decodeability is not tested as part of the optimisation
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process, all the solutions used in Fig. 5 are fully decodeable in

range and Doppler using any 3 PRIs out of each set. It is clear

that the evolved solutions can far exceed the performance of the

more traditional methods. The major/minor method with 9 PRFs

can be outperformed by the new methods with only 5 PRFs, and

the M of N method with 8 PRFs can be outperformed with only

7 PRFs.

Major/Minor   EA 5 PRF    M of N    EA 7 PRF   Simpson    EA 8 PRF 
0
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34771

26669
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2543
1758

305

Fig. 5. Comparison of results found by different methods

VI. CONCLUSIONS

This work has shown that evolutionary algorithms are a fea-

sible and effective alternative in finding optimum and near op-

timum solutions for the selection of PRF sets in medium PRF

radars. Especially where the algorithm to calculate the blind

zones is complex and therefore computationally intensive, un-

dertaking exhaustive searches for optimum and near optimum

solutions is a time and resource consuming procedure. The solu-

tions found by the evolutionary algorithm are significantly better

than those found by the main published methods of calculating

the PRF set.

Evolutionary algorithms can have objectives that change with

time and if the algorithm can be made to run fast enough, real

time or near real time optimisation of the PRF set could be fea-

sible. As many of the characteristics of the radar returns vary

with such factors as altitude, terrain and platform velocity, oper-

ational performance gains could be made. A radar with adaptive

PRF set selection would probably gain an advantage in terms of

Electronic Surveillance Measures (ESM). A radar with a con-

stantly changing waveform featuring a variable number of PRFs

would undoubtedly present a more difficult problem to anyone

attempting to deploy Electronic Counter Measures against it.

Existing PRF set selection methods can only cope where the

solution space is small enough to search exhaustively, or where

there are many constraints allowing only a few feasible solu-

tions. Evolutionary Algorithms can find operationally sound

solutions where the solution space is too big to search exhaus-

tively. In the past, having to reduce the problem complexity has

limited the design of medium PRF radars and it may be possible

to design fundamentally more complex radars with far superior

performance using the evolutionary techniques.
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