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Using Multiple Genetic Algorithms to Generate

Radar Point-Scatterer Models

Evan J Hughes and Maurice Leyland

Abstract|This paper covers the use of three di�erent ge-

netic algorithms applied sequentially to radar cross section

data to generate point scatterer models. The aim is to pro-

vide automatic conversion of measured 2D/3D data of low,

medium, or high resolution into scatterer models. The re-

sulting models are intended for use in a missile{target en-

gagement simulator. The �rst genetic algorithm algorithm

uses multiple species to locate the scattering centres. The

second and third algorithms are for model �ne tuning and

optimisation respectively. Both of these algorithms use non-

dominated ranking to generate Pareto-optimal sets of re-

sults. The ability to choose results from the Pareto sets

allows the designer some 
exibility in the creation of the

model. A method for constructing compound models to

produce full 4� steradian coverage is detailed. Example re-

sults from the model generation process are presented.

Keywords| Multiple Genetic Algorithms, Pareto Opti-

mal, Multiple Species, Radar Cross Section, Point Scatterer

Models.

I. Introduction

M

ODERN missile design techniques based upon ge-

netic algorithms (GAs) and neural networks often

require fast and accurate missile{target engagement simu-

lations. Many simulation systems use random numbers to

mimic the e�ects of a 
uctuating target radar cross sec-

tion (RCS) in an attempt to minimise simulation times.

The RCS models described in this paper are created from

real RCS data but still retain the rapid execution times

required for simulation. Real high-resolution target RCS

data consume massive amounts of disk storage space. The

storage requirement may be overcome by processing the

data o�-line to generate a model that can be used to recre-

ate quickly a good approximation of the original RCS.

The model may be produced from the source data by

identifying and storing the locations of the main re
ective

surfaces of the target. These collections of scattering cen-

tres can be replaced by models consisting of ideal isotropic

point scatterers placed in the same locations. These models

approximate the target su�ciently for our purposes. Point

scatterer models allow the e�ective resolution of the data

to be increased by interpolating between measured sam-

ple points. The interpolation is nonlinear and is related to

the arrangement of the scatterers. The interpolated data

therefore appear as a realistic RCS pattern.

Traditionally, the conversion process is very computa-

tionally intensive. The GA system described in this paper

automates the conversion of RCS data into realistic models

and reduces the processing overhead involved in the con-

version process. The GA approach makes it practical to
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generate models using only a desktop PC. The paper �-

nally describes the construction of compound models that

give full 4� steradian coverage and still retain the rapid

execution properties of simple point-scatterer models.

II. Conversion Process

Figure 1 shows a block diagram of the conversion pro-

cess. The RCS data need to be measured over a small

range of azimuth and elevation angles and for a spread of

frequencies. These data can then be used to form a three-

dimensional inverse synthetic aperture radar (ISAR) image

[1, Page 726]. This image is analogous to an optical holo-

gram and allows the rough spatial locations of the major

scattering centres to be identi�ed [2].
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Fig. 1. Block diagram of RCS data conversion process

The positions of the scatterers are located using the �rst

GA, which has a population split into multiple species and

is capable of identifying multiple scatterers in each run.

A model is generated with scatterers located at the rough

positions identi�ed from the image and the second GA is

applied. This algorithm is designed to �ne tune the loca-

tion of the scatterers to improve the accuracy of the model.

The RCS of the model is checked against the required

target pattern. If the model does not �t, an ISAR image of

the model is generated. This image is then subtracted from

the original image. The subtraction reveals the scattering

centres that have not yet been included in the model. The

identi�cation/�ne tune cycle is repeated until the RCS of

the model matches the required data satisfactorily. At this

point, the model may have well in excess of 100 scatterers.
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Once satisfactory model elements have been generated

when compared to the ISAR image and RCS data, the

model must be reduced to a convenient size and �delity.

The third GA performs a combinatorial search of di�er-

ent numbers of scatterers and con�gurations in an attempt

to reduce the number of scatterers in the model whilst

minimising the induced error. A Pareto-optimal [3, Pages

197{201] set of evaluated solutions is then generated. The

Pareto set allows the designer to trade between �nal model

size and the accuracy of the RCS to the original data. Final

models suitable for our simulations often contain around

100 scatterers.

The RCS of a point scatterer model at wavelength � may

be de�ned as:
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The total RCS of the target, �

T

, is de�ned as the square

modulus of the coherent sum of the echos from the n scat-

terers. Each scatterer has its own RCS, �

k

, and is at a

distance d

k

from the observation point [1, Page 23]. The

sum of the echos is a complex quantity with units of volts.

The RCS is a scalar with units of square metres.

The e�ective scaling of ISAR images in cross-range (up{

down, left{right) and slant range (front{back) is deter-

mined by the sample step size and number of samples in

azimuth, elevation, and frequency. Eq. 2 and 3 show how

to calculate cross range and slant range resolution respec-

tively.
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where n

c

is the number of steps in cross range, n

s

is the

number of steps in slant range, �� is the angular step size in

radians, �f is the frequency step in Hertz, c is the speed of

propagation in metres/sec., and f is the mean frequency in

Hertz. The cross range and slant range resolutions are de-

noted by r

c

and r

s

while the total range extent are w

c

and

w

s

respectively. All range measurements are in metres.

Care must be exercised in the choice of angular window

(n

c

��) that the measurements are taken over. A window

greater than 10

�

will begin to cause a blurring at the edges

of the image. Techniques can be used to focus the image,

thereby reducing the burden on the �tting process. Due to

the wider angle of interest, more scatterers are eventually

required to �t the RCS to the model accurately. Image

generation involves the application of Fourier transforms

to the RCS data and therefore su�ers from the spectral

spreading problems inherent in this process. The GAs do

not require the application of window shaping functions

to reduce spreading e�ects. The inherent square window

leads to sharp peaks with long tails extending into the im-

age. This actually aids the search abilities of the �rst GA

(section III-C).

III. Scatterer Identification

A. Introduction

An iterative method may be used to identify the scat-

terer locations [4]. This method operates by �rst �nding

the size and coordinates of the brightest spot in the image

and places a scatterer in the corresponding position in the

model. An approximation of the ISAR image of the scat-

terer is then subtracted from the original image to remove

the corresponding bright spot. The process is repeated un-

til all the major bright spots have been removed. Figure 2

illustrates the algorithm. Other methods have been devel-

oped that rely on drawing contour maps of the image and

locating the scatterers within the bounded regions [5].
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Fig. 2. Iterative RCS data conversion process

Those methods work well but have one major drawback:

they require high-resolution data in order to locate the cen-

tre of each scatterer accurately. High-resolution data is

easily obtainable if the target is computer generated from

a CAD model, but it is not practical to analyse a real tar-

get in such �ne detail. A typical three-dimensional image

of 640 pixels on each axis will require (640)

3

elements and

therefore two gigabytes (Gbytes) of storage space. Finding

the location of the maximum value necessitates searching

the entire set of data for each scatterer that is resolved.

Images often require 100 or more scatterers for accurate

representation and therefore the equivalent of 200 Gbytes

of data must be retrieved from the storage media. On a

small system, the data access and transfer times may be

signi�cant.

A GA may be used to locate multiple bright spots in

one pass. A model may be formed from these bright spots

and its e�ects subtracted from the original image as be-

fore. Further applications of the GA will locate any smaller

points remaining. To calculate the image of the model,

for a high-resolution image of 640 pixels on each axis,

3 � (640

2

) = 1; 228; 800 Fast Fourier Transforms (FFT)

need to be performed to create an image from the cross

section data. On a typical desktop PC (Pentium 90Mhz),

it would take around two hours to perform the transforms.

To generate a model with 100 scatterers on a desktop PC



3

using this method would take over a week. This time scale

and the massive storage requirement means that the itera-

tive approach is not viable on a small system. Generating

an image of one scatterer takes almost as long as generat-

ing an image of ten scatterers. Thus by processing multiple

points in each pass of the data, vast savings can be made

in image generation time. A multispecies GA that can

identify seven or eight scatterers in each run will cut the

processing time for a 100-scatterer model to around one

day. This multimodal function approach can make model

generation possible on a small system.

B. MultiModal Optimisation and Sharing

Most GAs use a single population of a single species. The

algorithms are designed so the solutions represented by the

di�erent individuals converge on the single optimum solu-

tion of the objective function. In multimodal optimisation,

the GA is designed to converge with multiple solutions.

Each solution corresponds to a separate peak in the objec-

tive function.

There are a number of mechanisms that may be used to

force a GA to exhibit multimodal behaviour.

1. Iteration { Many independent runs of the GA are

performed in an attempt to identify all the peaks. This

method is very ine�cient as the larger peaks will often

be found many times [6, Page 176].

2. Sharing { The sharing system operates by modifying

the objective value that is seen by each individual.

If a number of individuals all occupy the same peak

in the objective function, they are made to share the

objective value at that point [7]. This simple concept

is enough to allow multiple stable populations to form.

3. Crowding { Crowding is a selective breeding tech-

nique where o�spring are inserted into the popula-

tion by replacing individuals that are genetically simi-

lar [8]. The process allows multiple stable populations

to form.

4. Sequential Niching { The process operates by it-

erating the GA but maintains a record of the best

solutions found. At each successive iteration of the

GA, the peaks that correspond to the solutions found

in previous runs are suppressed. This method is es-

sentially a sequential version of the sharing process

described earlier [9].

In order to identify multiple scatterers in each pass of the

GA, either sharing or crowding methods must be used.

For the sharing process, a function that is related to the

separation distance between two individuals' chromosomes

is used to control the modi�cation of the objective func-

tion. Eq. 4 (below) de�nes the sharing function used, with

d(�(i); �(j)) de�ned as the distance between the chromo-

somes vectors �(i) and �(j), s(i; j) is the sharing e�ect of

i on individual j, and �, � are factors for modifying the

function shape. When � = 1, this function produces a

linear variation that moves from unity at zero distance to

1 � � at a distance of � and zero thereafter. If � 6= 1,

the function has an exponential form. Using a value of �

less than unity has a similar e�ect to using high values of

�, but without the processing overhead of the exponential

calculations.

s(i; j) =

(

1�

�

d(�(i);�(j))

�

�

�

� d � �

0 d > �

(4)

where d = d(�(i); �(j)) = j�(i)� �(j)j

For each individual, i, the distance is calculated from its

chromosome to the chromosome of every other individual,

j, in a population of N individuals and the values for each

of the sharing functions are totalled (Eq. 5). The result

is used to derate the image value at the point de�ned by

the chromosome of i, I(�(i)) yielding a new objective value

O(i). Eq. 6 shows the objective calculation O(i).

S(i) =

N

X

j=1

s(i; j) (5)

O(i) =

I(�(i))

S(i)

(6)

These sharing functions work well, but for the large and

complex optimisation surfaces found in scattering centre

identi�cation, large populations are required. Thus the re-

quirement for every individual to be compared to every

other produces a signi�cant processing overhead. In an

attempt to reduce the processing requirements, the shar-

ing function has been modi�ed to operate using multiple

species rather than individual members [10]. This process

combines the niche forming properties of the sharing pro-

cess with the selective breeding of the crowding algorithm.

We can now de�ne the position and spread of a species by

the mean of the species chromosomes and their standard

deviation. Eq. 7 and 8 de�ne the spread and deviation,

where n

k

is the number of individuals in a species and

�(i; k) denotes the chromosome of individual i of species

k. If we assume that the spread of individuals around the

mean position is roughly Gaussian, a sphere with a two

standard deviation radius from the mean will encompass

the main bulk (74%) of the population. Thus we may de�ne

2�

k

as representing the spatial distribution of population

k.
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Eq. 9 de�nes the modi�ed sharing function, where �

k

is

a sharing distance that varies with the spread, �, of the

species. The spread of the species is still limited to a min-

imum distance of �. This sharing function is then applied

to all N

s

species, except the members' own, and the results

summed (Eq. 10). The objective cost for the individual is
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then derated by one plus the share value to account for the

individual itself and is shown in Eq. 11.
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O(�(i; j)) =

I(�(i; j))

1 + S(�(i; j))

(11)

The sharing function de�ned in Eq. 9 is based on a squared

law rather than a linear function, i.e. with reference to

Eq. 4, � = 2. Individuals that are close to the species centre

are a�ected more than those further away. An increase in

calculation speed is gained by not requiring the square root

of the magnitude of the distance to be taken. Unlike the

�xed shape individual sharing functions used previously,

the functions associated with each species are dynamic and

vary with the geographical motion of the individuals within

the species.

The ratio of the number of individuals in a species (n

k

)

to the species spread (2�

k

) has been included as a factor in

Eq. 5 to give Eq. 10. This ratio makes the in
uence that

each species has on other individuals change dynamically

with the species spread. Each species is now referred to

by its mean position. When a species' population is widely

dispersed (� � �), the function has little e�ect on other in-

dividuals. As a species' population converges (� ' �), the

range of the function decreases but its in
uence increases.

This added in
uence forces di�erent species to separate as

their populations converge. A minimum distance, �, for the

spread of the function is used to prevent di�erent species

from converging too closely to one another. This minimum

distance helps increase the diversity of the geographical

spread of the species.

C. Algorithm Construction

A real-valued chromosome with three parameters has

been used to de�ne each individual. The parameters are

de�ned as being the (x; y; z) coordinates of a location in the

three-dimensional ISAR image. The genotypic space, i.e.

chromosome level, allows the parameters to have fractional

components. In turn, the fractional component allows real-

valued mutations to be applied. The genes are rounded to

the nearest integer to obtain the phenotypic data that rep-

resent the picture element indices. The raw objective value

is de�ned as the image intensity at the indexed point.

The algorithm follows the usual format of ranking, se-

lection, crossover, mutation, and evaluation but with each

species being processed separately. The same number of

o�spring as parents are generated and a total replacement

policy is used. The total replacement policy helps to reduce

the rate of convergence and allows the species to relocate

themselves to minimise problems caused by overcrowding.

The �tness value F (x) is assigned according to rank po-

sition p

x

of individual x. The individual with the lowest

O(x) (least �t) being assigned a rank position of 1 and the

best individual being assigned rank position M . Eq. 12

details the calculation of F (x).

F (x) =

2s(p

x

� 1)

M � 1

+ (1� s)

�

�

�

�

0<s�1

(12)

where s is the selective pressure [6, Page 56] and may lie

in the range 0 < s � 1. The emphasis that is placed upon

the selection process may be controlled by adjusting s. A

value of zero is never used as any bias between good and

bad individuals is prevented and therefore no selection oc-

curs. A value of unity gives the maximum selection where

the chances of selecting the worst individual are near zero.

The e�ect of reducing the selective pressure is to slow the

convergence of the algorithm. In this algorithm, a selective

pressure of 0:8 is used. This value has been selected em-

pirically and allows the species to search the entire image

but still converge satisfactorily.

Stochastic universal sampling [6, Page 57] is used to se-

lect M individuals from the population. This sampling

process gives zero bias and minimum spread. The individ-

uals selected are randomly shu�ed and then paired up for

breeding. Uniform crossover [6, Page 88] is used to generate

two new o�spring from each pair of parents.

This operator swaps individual gene-pairs between the

parents with a probability of 0:5. For example, if we have

two parents, a and b, both with chromosomes containing

two genes, uniform crossover can be used to generate two

o�spring. The �rst o�spring may have its �rst gene from

parent-b and its second from parent-a. Due to the spec-

tral spreading that occurs with the Fourier transforms in

the ISAR image generation, each peak has long tails that

spread out in the axis directions. Although a real-valued

chromosome is used, the uniform crossover is suited to

searching the image as individuals often settle onto a tail

emanating from a peak. If the two parents are each lying

on di�erent tails of the same peak, after crossover, the o�-

spring may lie exactly on the peak. Other recombination

techniques that create o�spring by combining genes pro-

portionally are unlikely to score a direct hit on the peak.

Genes are mutated with a probability of 0.3. This proba-

bility will mutate, on average, approximately one gene per

chromosome. The range of the mutation is governed by

Eq. 13, where G is the generation number and G

m

is the

maximum number of generations. This nonuniform muta-

tion [6, Chapter 6] function is unity initially and progresses

to zero at the �nal generation and is used to modify the

maximum deviation from the current gene value. Initially,

the gene can mutate to any value within its range but this

range is reduced with time. The range modi�er function

forces the GA to converge on a solution by con�ning the

o�spring of each subsequent generation to a diminishing

region. In the �nal stages of the GA, the mutation range

is limited to a very small locality, forcing the species to

converge on the true local optimum. The function shape

allows the GA to perform a thorough search in the early
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generations but still retain the convergence properties of

nonuniform mutation toward the end phase of the algo-

rithm. The use of a real-valued chromosome in this GA is

due to the use of this speci�c nonuniform mutation opera-

tor. Figure 3 depicts the function shape graphically.

R(G) = 1�

0

@

1� cos

�
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Fig. 3. Nonuniform mutation range modi�er function used in GA-1

The objective function for the o�spring is calculated as

detailed previously, based on the statistics of the parent

population. Policies other than total replacement have

been tried but appear to o�er little bene�t as the ob-

jective function is e�ectively dynamic with the motion of

the species. The use of dual chromosomes (diploidy) and

a dominance mechanism have been tried to improve the

search process by allowing species to develop a memory of

good peaks they have occupied in the past. The e�ect was

to slow the convergence of the algorithm but no improve-

ments in the results were noticed. The lack of improvement

was probably due to the low number of generations used in

the algorithm.

The algorithm is terminated after 50 generations and the

best overall individual of each species is recorded as a peak

location. The small number of generations combined with

forced convergence has been chosen to give a short and con-

sistent execution time. As the algorithm is being applied

in an iterative fashion, the requirement is to identify any of

the peaks in the image, rather than the highest set. There-

fore the algorithm's ability to identify the global peak in

each run is sacri�ced for speed. The use of 50 generations

has been chosen empirically to allow the population to be-

gin to converge before the non-uniform mutation operator

begins to have a signi�cant e�ect.

Once the algorithm has terminated, duplicate peaks and

any that are within one spread distance (��) are removed.

A range of species is used, each with a di�erent population

size. This range of species sizes introduces a slight bias into

the algorithm where the smaller species are able to move

more rapidly than the larger species but have a weaker hold

on any peaks they �nd. The larger species move slowly but

are capable of evicting small species from peaks that are

already colonised.

Comparing the multispecies GA to existing approaches

that search for the highest peak, if we have an algorithm

with 750 individuals and run it for 50 generations, it will

require 37500 objective calculations. The algorithm can

locate as many peaks as there are species, although a 70%

identi�cation rate is more realistic. If we apply the algo-

rithm 10 times to identify 100 scatterers in a high resolu-

tion image, a total of 375,000 accesses are required to the

image data. The conventional iterative model conversion

approach accesses nearly 560,000 times as much image data

and generates ten times as many ISAR images to achieve

the same model resolution.

IV. Model Tuning

A. Introduction

With low-resolution images, the scatterer locations gen-

erated by the �rst GA may be a signi�cant distance away

from the optimum positions. Even with high-resolution

data, if two scatterers are very close, the image peak po-

sitions may not be truly aligned with the actual scatterer

location [11]. By �ne tuning the model, these errors can

be reduced. The �ne tuning process will ultimately result

in the model requiring fewer scatterers to match the target

data and so reduce the burden on the third GA.

B. Image Registration

The �rst stage in converting the scatterer image details

into a point scatterer model is to register the image with

the model. The image registration is achieved by placing a

scatterer at the origin of the model and generating an ISAR

image of it. The highest point in the image will correspond

to the scatterer in the model, giving the image{model zero

location �1 resolution cell. A rough amplitude scaling can

be calculated from the brightness of the peak in the image.

Knowing the true image resolution from Eq. 2 and 3, the

model position of a point that is a �xed distance on each

axis away from the centre is calculated. The distance cho-

sen must be related to the position of the centre point so

that the peak should not fall outside the image region. If

it does lie outside, an aliased image will be present, but at

a false location. This second peak allows the image scal-

ing to be be veri�ed and any scale inversions identi�ed.

It is possible for increasing x in the model space to lead

to decreasing x in the image etc. This indicates that the

data ordering has been reversed in some way and must be

corrected. The image{model registration only needs to be

performed once at the beginning of the conversion process.
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C. Model Generation

Once the zero location and scale have been veri�ed, the

location of each identi�ed scatterer in the image can be

transformed directly into a point in the model, with an

accuracy of �1 resolution cell. If the images are high reso-

lution, for example greater than 512 samples in each axis,

the resolution induced error will typically be of the order

of a few centimetres or so, and therefore close enough for

conversion purposes. The amplitude scale factor derived

from the zero registration should also be accurate enough

for direct conversion. An image of the model can then

be subtracted from the original ISAR image to reveal the

smaller scatterers that have not yet been located.

If the image is of low to medium resolution, i.e. 32 to

512 samples, the error in the scatterer's location becomes

progressively worse and may ultimately be a few metres.

Experience has shown that the observed peak amplitude

in these cases may range from near zero, up to the true

peak value. To cope with these images, the raw model

positions must be �ne-tuned in an attempt to reduce po-

sitional and amplitude errors. Figure 4 demonstrates the

e�ects of a small number of samples on the image of a

scatterer when the scatterer does not align with the sam-

ple position. When the peak of the image coincides with

the sample location, the indicated amplitude is accurate.

As the sample point is shifted left or right, the measure-

ment error increases, with the indicated peak height being

less than the actual peak.

Shifted Left Aligned Shifted Right

Fig. 4. E�ects of mis-alignment between scatterer and sample instant

D. Genetic Algorithm Operation

The following GA is designed to adjust the raw scatterer

positions to improve the match to the required image. It

should be noted that as the image resolution decreases, the

work of this GA increases and the load on the �rst GA for

scatterer location is reduced. This shift in processing load

should be adjusted by the designer for each di�erent image

type that is to be processed.

To reduce processing overheads, instead of calculat-

ing and comparing three-dimensional images, three one-

dimensional images are used [4]. These images are formed

by taking data from the three principle axes of the RCS

pattern and using a Fourier transform to convert the RCS

data to range information. Typically, if the RCS data in

the region around the centre of the azimuth, elevation, and

frequency bands are of most interest, the RCS would be

measured at the mean azimuth and mean elevation and

over the full frequency sweep, then at the mean elevation

and mean frequency with a full azimuth sweep etc. If we

have a 64�64�64 sample image, for full conversion, 12,288

Fourier transforms are required. Only three are required

if the one-dimensional approach is used. This major re-

duction in the processing overhead is o�set by reduction

in the �delity of the error measurements. It has been ob-

served that the �ne tune operation is not compromised by

the use of a reduced set of data. If very low-resolution data

are used, the processing of the full image is not too severe.

The use of the full image in the comparison process may

be justi�ed to increase the �ne tuning capabilities of the

GA.

If the tuning process is not perfect, position and ampli-

tude errors in the model will lead to errors in the image.

As the model image is subtracted from the required image,

any peaks in the model that are smaller than they should

be will leave a positive residue peak in the image after sub-

traction. This smaller scatterer will be identi�ed in subse-

quent passes and reduced further. This mode of operation

eventually leads to models with an excess of scatterers. If

the scatterers in the model are larger than they should be

or in the wrong position, a negative result is obtained in

these areas of the image after the subtraction process. This

error cannot be corrected in subsequent passes of the algo-

rithm and causes bright spots in the ISAR image that are

too large. The negative error is highly undesirable and is a

problem with any technique that operates by an iterative

scatterer subtraction process.

The problem is addressed in the GA by calculating the

amount of overshoot (negative error) and undershoot (pos-

itive error) of the �t separately. A multiobjective approach

is used that allows the designer to trade between the im-

age errors. A slow �tting process may be used that min-

imises the undesirable overshoot errors but leads to larger

models. Alternatively, a less stringent �tting scheme may

be applied that minimises undershoot and therefore uses

less scatterers, but at the expense of ISAR image accu-

racy. Alternatively a compromise can be drawn between

the two objectives that attempts to minimise the negative

error problems without creating a large model.

E. Non-dominated Ranking

A Pareto optimal set of results [3, Pages 197{201] may

be formed where no single solution is better than any other

in both objectives. These solutions are said to be non-

dominated as no solution can be chosen in preference to

the others based on the two objectives alone. There exists

a single Pareto optimal set of solutions to the problem.

At any intermediate stage of optimisation, a Pareto set of

results will have been identi�ed. This set may or may not

be the optimal set.

A non-dominated ranking method [12] is used in the GA

to generate and maintain a Pareto set of results. Conven-

tional GAs often use a ranking method where the calcu-

lated objective values are sorted and assigned a rank that

is dependent only upon their position in the list, rather

than their objective value. The ranking operation helps to

prevent premature convergence of the GA.
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The non-dominated ranking system operates by �rst

identifying the non-dominated solutions in the population

and assigning them a rank of one. A dummy value (1

in this implementation) is assigned to these solutions and

the sharing process detailed in section III-B is applied.

With the sharing, the dummy values of the individuals'

are reduced if they have near neighbours (on a chromo-

some level). The sharing process ensures that a spread of

solutions is obtained across the Pareto front. The mini-

mum value assigned to the level one solutions is identi�ed

and then reduced slightly (by 1%). The level one individu-

als are removed from the population and the identi�cation{

sharing process repeated on the remaining set, using the re-

duced dummy value for the sharing operation. The ranking

process is continued until all of the individuals have been

accounted for.The resulting objectives are intended to be

used with a maximisation strategy. Figure 5 illustrates the

algorithm.

Y

Apply

Function

Remove

Population

Solutions FromDone

?

Ranked

Population

Population

Identify

Non-dominated

Solutions

All

Sharing

N

Unranked

Fig. 5. Non-dominated ranking process

The conventional �tness and selection processes are then

applied as normal to the objective obtained by the non-

dominated ranking and sharing operation. An elitist strat-

egy is developed that preserves an entire Pareto front of

P solutions from generation to generation. To maintain a

working population of N individuals, the Pareto set from

the previous generation is concatenated with the working

population and then N o�spring are generated from the

N + P parents. After evaluation, the o�spring become

the new working set of individuals. The new Pareto set

is calculated from the population of solutions that results

from concatenating the new working set of individuals and

the old Pareto set, thus choosing the best from the new

solutions and old Pareto front. The number of solutions

that comprise the Pareto front, P , is dynamic. Kumar

and Rockett [13] discuss procedures that may be used if

assurances are required that the true Pareto optimal set of

solutions has been identi�ed.

F. Algorithm Construction

A real-valued chromosome is used, held in a matrix struc-

ture that has four columns corresponding to [�x �y �z a],

where �x, �y and �z are o�sets from the raw scatterer

position and a is the amplitude. The chromosome matrix

has the same number of rows as the number of scatterers

identi�ed in the scatterer location algorithm. The posi-

tional o�sets are limited to �1:25 resolution steps and the

amplitude is allowed to range from zero to 50% larger than

the largest identi�ed scatterer. The ranges have been cho-

sen empirically to allow the GA the 
exibility to explore

extreme solutions whilst minimising the execution time.

In the phenotypic (i.e. model) space, the scatterers corre-

sponding to each chromosome are concatenated to the pre-

viously identi�ed model before the images are generated.

Trials indicate that for a 3D image with a resolution of 64

samples on each axis, using the algorithm with around 100

individuals and running for 500 generations will give good

results.

Eq. 14 and 15 show the two objectives that are used

in the �tting process, where E(x; k), de�ned in Eq 16, is

the error between the required image, I(k), at point k and

the image of the model, M(x; k), for solution x; N is the

number of points in the image; O

1

(x) is objective one and

is a measure of mean squared overshoot; O

2

(x) is objective

two and describes undershoot. The objectives are both to

be minimised to establish the Pareto optimal front.

O

1

(x) =

1

N

N

X

i=1

�

E(x; i)

2

E(x; i) > 0

0 E(x; i) < 0

(14)

O

2

(x) =

1

N

N

X

i=1

�

0 E(x; i) > 0

E(x; i)

2

E(x; i) < 0

(15)

E(x; k) = I(k)�M(x; k)j

k=1:::N

(16)

The �tness function as de�ned in Eq. 12 is applied but

with a selective pressure of s= 1. This selective pressure

gives the maximum bias towards the most �t solutions.

Stochastic universal sampling is used to select N individ-

uals from the N + P set described previously. Uniform

crossover is applied where parts of the paired chromosomes

are exchanged. A mutation rate of 0.25 is applied along

with nonuniform mutation as described previously in sec-

tion III-C. This process increases the chances that the

solutions found will lie exactly at optimum positions.

At the end of the algorithm, one solution is chosen from

the Pareto set. Which solution is chosen is determined by

the design strategy that is being employed. A slow but

accurate method will chose the solution where O

1

is the

smallest (least overshoot) while a less stringent strategy

will pick the solution that minimises O

2

(least undershoot).

An average solution may be obtained by minimising the

sum of the normalised objective terms. For each objective,

the minimum and maximum limiting values are found from

those individuals in the Pareto set. These limits are used

to normalise the objective values to lie in the range zero

to one. The normalised values are then summed for each

individual. The individual which has the lowest sum is

chosen.

V. Fitting Cycle Termination

A. Introduction

After each �ne tuning phase, the model is tested to es-

tablish if enough scatterers have been identi�ed to allow
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the �tting cycle to end and the reduction phase to begin.

The test is applied to the best RCS pattern that can be

�tted to the current model. If the required cross section

pattern matches su�ciently the best pattern that can be

�tted to the model, the �tting cycle may be terminated.

B. Model Testing

Scatterer amplitudes and phases are �tted using a con-

strained least squares process [14] in an attempt to match

the required RCS pattern. The Kolmogorov{Smirnov sta-

tistical test is applied to establish the accuracy of the

model. This test gives a measure of statistical similarity

that is independent of the amount and mean amplitude of

the RCS data used in the comparisons. If the RCS of the

model does not �t the required data, an image is generated

from the model and this image is subtracted from the orig-

inal image. This process removes the scatterers that have

been identi�ed. The new image is then passed back to the

�rst GA to identify a new set of peaks.

C. Constrained Least Squares Fitting

If the �eld pattern described by the N target RCS data

are denoted by a vector g

o

and the M model amplitudes

and phases are described by a vector f , Eq. 17 describes a

linear operator T that relates the two.

[T ]

N�M

[f ]

M�1

� [g

o

]

N�1

(17)

Eq. 18 de�nes the standard unconstrained least squares

solution, where T

�

indicates the complex conjugate and

T

T

indicates matrix transpose.

f = [[T

�

]

T

T ]

�1

[T

�

]

T

g

o

(18)

Unfortunately, the simple least squares method can give

wild overestimates for scatterer magnitude values in the

model. A better method is to use a constrained least

squares approach [14].

If �

i

and �

i

denote the i

th

Eigen vector and Eigen value

of the matrix [T

�

]

T

T , ie.

[[T

�

]

T

T ]�

i

= �

i

�

i

Then the constrained least squares approximation of f is

de�ned by Eq. 19.

f =

M

X

i=1

c

i

(�

i

+ �)

�

i

(19)

where

c

i

= [�

�

]

T

[T

�

]

T

g

o

The value � may be found using the Newton{Raphson iter-

ative method, Eq. 20 details the calculation; where C is the

applied constraint. A starting value of �

0

= 1 is suggested.

�

1

= �

0

�

0

@

C �

P

M

i=1

jc

i

j

2

(�

i

+�

0

)

2

2

P

M

i=1

jc

i

j

2

(�

i

+�

0

)

3

1

A

(20)

The square of the norm of f de�ned in Eq. 21 is limited

by the value of the constraint C.

jjf jj

2

=

M

X

i=1

jf

i

j

2

(21)

The required constraining value for jjf jj

2

, ie. C, is found

by calculating the squared norm of the image. Eq. 21 is

applied to the image with f

i

representing each picture el-

ement. As the image intensity is determined by scatterer

amplitudes, the squared norm should be approximately the

same as the squared norm of the model.

D. Statistical Testing

The Kolmogorov-Smirnov (K{S) statistical test [15,

Pages 472{475] is used to compare the RCS of the �tted

model with the target RCS. The test gives a �gure of merit

for the similarity between the cumulative distribution func-

tions of the RCS probability distributions. The K{S num-

ber, �

KS

, may be related to a probability that the sets of

data are drawn from the same distribution.

If we have two cumulative distribution functions S

1

and

S

2

of size N

1

and N

2

respectively, the K{S statistic is

�

KS

=

r

N

1

N

2

N

1

+N

2

�

max

�1<x<1

jS

1

(x) � S

2

(x)j

�

In the case of the null hypothesis `sets of data drawn from

the same distribution', the distribution of the K{S statistic

can be calculated giving the signi�cance of any observed

non-zero value of �

KS

.

The signi�cance may be calculated using

Q

KS

(�) = 2

1

X

j=1

(�1)

j�1

e

�2j

2

�

2

which is monotonic with limiting values Q

KS

(0) = 1 and

Q

KS

(1) = 0. In terms of this function, the P-value (�̂) of

an observed value of �

KS

is given approximately by

Prob(�

KS

> observed) = Q

KS

(�

KS

)

The approximation becomes asymptotically accurate as N

becomes large. Typically N > 20 is acceptable.

VI. Model Reduction

A. Introduction

The process of model �tting can yield models with large

numbers of scatterers. This large amount of model data

can create extended simulation times. If we accept that a

measured or calculated RCS will never be a perfect repre-

sentation of the real target [16], [17], small degradations in

data �delity are acceptable. Therefore, if we remove some

of the scatterers in an n-point model, we should be able to

readjust the model to give an approximation to the desired

RCS. As the model is used tens of thousands of times in a

typical engagement, any reduction in model size is bene�-

cial.
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As RCS is governed by scatterer interactions, simple it-

erative reduction methods that remove the points that ap-

pear to have the least in
uence may not always select the

best combination of scatterers [18]. A small scatterer may

have little e�ect on its own but may be dominant when

paired with another similar scatterer. An exhaustive search

of all possible model combinations in an attempt to �nd an

optimum solution is often impractical.

B. Algorithm Construction

A n-bit chromosome has been used to de�ne the model

structure, [s

1

s

2

: : : s

n

], where n is the number of scatterers

in the model. Each bit corresponds to a scatterer. If a bit

is `1', the corresponding scatterer is present in the model;

if it is `0', the scatterer is omitted. Scatterer locations

are kept �xed, magnitudes and phases are �tted using the

least-squares �tting method each time a new individual is

created.

The performance of each individual is calculated by �rst

�tting weightings to the selected scatterers using the con-

strained least-squares method de�ned in section V-C and

then generating the N radar echo data samples for the re-

gion of optimisation. The mean squared error of the radar

echo from the individual's model compared with the orig-

inal required radar echo is calculated at each stage by ap-

plying Eq. 22, allowing the e�ects of the reduction to be

monitored for the current region of optimisation. In Eq. 22,

r(x)

i

is the radar echo of model x at point i, g

i

is the re-

quired radar echo and N is the number of data samples.

The number of active scatterers in the model is calculated

using Eq. 23; where �(x)

i

is gene i in the chromosome of in-

dividual x. The number of scatterers is used along with the

radar echo error to generate a Pareto set of results where

model size is traded against reproduction accuracy.

O

1

(x) =

1

N

N

X

i=1

jr(x)

i

� g

i

j

2

(22)

O

2

(x) =

n

X

i=1

�(x)

i

(23)

The non-dominated ranking methods described in sec-

tion IV-E are used to maintain the Pareto population. A

selective pressure of s=1 is used to give maximum distinc-

tion between good and bad solutions. Multipoint crossover

[19, Page 13] is used to generate two new o�spring from

each pair of parents with a crossover rate of 0:8. This value

has been chosen empirically to increase the rate of conver-

gence in the initial stages of the algorithm. A mutation

rate of 1=n is used, where n is the number of scatterers.

This should mutate on average one gene per chromosome.

After each run is terminated, the Pareto set is recorded

as the solution. If an exhaustive search is performed, 2

n

objective calculations are required. If we take the GA as

requiring 100 individuals and 500 generations, 50,000 cal-

culations will be performed. This means that a model of

15 scatterers or less is best reduced using an exhaustive

search.

VII. Example Results

A. Introduction

Two example model �tting trials are presented in this

section, one on measured two-dimensional data and one

on a simulated three-dimensional image. The examples

are typical of many processed models and demonstrate the

versatility of the GA approach with its ability to process

many di�erent types of image.

The strategy used for �ne tuning in both trials was to

try to �nd an average solution. In both cases, the RCS

data used in the �tting process was derived from the same

source as the 1D ISAR images described previously. These

azimuth, elevation (3D only), and frequency traces are con-

catenated to form a single pattern to match. This gives

general coverage of the cross section data whilst minimis-

ing computation time. Table I summarises the structure of

the three GAs used in the model generation process.

B. Two-Dimensional Image

The two-dimensional data were measured from a real tar-

get at zero elevation and with the image conditions spec-

i�ed in Table II; where range resolution and total range

are in metres. The results were obtained with the GAs

operating under the conditions shown in Table III.

TABLE II

Conditions for ISAR Image Generation (2D)

Range Res. Total Steps Sweep Range

Slant 0.2986 76.44 256 2.5GHz : 3GHz

Cross 0.2963 18.96 64 �5:1

�

: 5:4

�

TABLE III

Operating conditions for GAs (2D)

Parameter GA-1 GA-2 GA-3

Maximum generations 50 100 300

Total no. individuals 100 20 25

No. of species 7 1 1

Selective pressure 0.8 1.0 1.0

Crossover rate 1.0 1.0 0.8

Mutation rate 0.3 0.25 1=n

Minimum share dist., � 3 10 1

Share shaping, � 0.5 1.0 1.0

The �rst �tting stage comprising GA-1 and GA-2 re-

quired 38 iterations to locate 174 scatterers with RCS K{S

signi�cance of 90%. Figure 6 shows the locations of the

scatterers and Figure 7 shows the original ISAR image. It

is quite apparent that the scatterer locations closely follow

the form of the ISAR image.

The third GA was then used to generate a set of smaller

models. Figure 8 shows the set produced after 300 gen-

erations of GA-3. The cost function used is as de�ned in

Eq. 22. Although the cost function is a good means of
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TABLE I

Summary of GA Structures

Feature GA-1 GA-2 GA-3

Type real real binary

Chromosome [x y z] [�x �y �z a] [s

1

s

2

: : : s

n

]

Multispecies yes no no

Non-dominated ranking no yes yes

Non-uniform mutation yes yes no

Objective Image value (Eq. 11) Overshoot (Eq. 14) Mean sq. error (Eq. 22)

Undershoot (Eq. 15) Model complexity (Eq. 23)
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Fig. 6. Scatterer locations identi�ed from the 2D ISAR image
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Fig. 7. Original 2D ISAR image

quantifying the error between the model and the required

RCS, it is di�cult to gauge the optimum model size to use.

Figure 9 shows the the results of the K{S statistic when

applied to the reduction set. It is clear that the best iden-

ti�ed model has 128 scatterers as the 90% signi�cance level

is maintained. Allowing GA-3 to run for more generations

would eventually provide a smooth K{S curve but may not

improve on the model size. The option to terminate the

GA early is left to the designer.
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Fig. 8. RCS cost against number of scatterers for the 2D data

Figure 10 shows the scatterer locations in the reduced

model. The RCS of the model (solid) compared to the

required cross section (dashed) is shown in Figure 11. The

ISAR image of the model is shown in Figure 12

C. Three-Dimensional Image

The three-dimensional test data were generated from

a semirandom model consisting of 50 scatterers roughly

shaped to mimic an aircraft and with the image condi-

tions speci�ed in Table IV, where range resolution and to-

tal range are in metres. The following results were obtained

with the GAs operating under the conditions shown in Ta-

ble V.
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Fig. 9. K{S signi�cance of reduced models (2D)
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Fig. 10. Scatterer locations of 2D reduced model

TABLE IV

Conditions for ISAR Image Generation (3D)

Range Res. Total Steps Sweep Range

Slant 0.3845 24.61 64 10.8 : 11.2 GHz

Cross, Az 0.3906 25.00 64 �1

�

: 1

�

Cross, El 0.3906 25.00 64 �1

�

: 1

�
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Fig. 11. Radar cross section of 2D reduced model
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Fig. 12. ISAR image of 2D reduced model

TABLE V

Operating conditions for GAs (3D)

Parameter GA-1 GA-2 GA-3

Maximum generations 50 500 500

Total no. individuals 750 100 150

No. of Species 10 1 1

Selective pressure 0.8 1.0 1.0

Crossover rate 1.0 1.0 0.8

Mutation rate 0.3 0.25 1=n

Minimum share dist., � 3 10 1

Share shaping, � 0.5 1.0 1.0
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The �rst �tting cycle required 24 iterations to identify

173 scatterers that gave a �tted RCS to a K{S signi�cance

level of 95%. The third GA was then applied to obtain a set

of reduced models. Figure 13 shows the set produced after

500 generations of GA-3. Figure 14 shows the the results

of the K{S statistic when applied to the reduction set. It is

clear that the best identi�ed model has 88 scatterers as this

gives an acceptable 90% signi�cance level. Again it is up

to the designer to decide how long the reduction algorithm

should be run for. The smallest model of suitable �delity

should always be used to minimise engagement simulation

times. Figure 15 shows the scatterer locations in the re-

duced model. The RCS of the model (solid) compared to

the required cross section (dashed) is shown in Figure 16.
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Fig. 13. RCS cost against number of scatterers for the 3D reduction

phase

D. Discussion

Despite the ISAR images having a spatial resolution of

approximately 30 centimetres, models were generated that

have a reasonable number of scatterers and still approxi-

mate the targets RCS. The examples demonstrate clearly

the ability of the multiple GA method to process both low-

to-medium resolution data and 2D/3D data. The tradi-

tional iterative approach requires data with ten times the

resolution to produce a good model. The multiple algo-

rithm approach may be applied equally to radar cross sec-

tion data generated from CAD models, where many numer-

ical short-cuts may be applied to increase the performance

further [4].

VIII. Compound Model Formation

The models are combined using a binary space partition

(BSP) Tree structure [20, Pages 675{680] to allow the cor-

rect point scatterer model to be rapidly retrieved for any

aspect angle. The structure allows the models generated for

small aspect angles and frequency ranges to be combined
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Fig. 14. K{S signi�cance of reduced models (3D)
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Fig. 15. Scatterer locations of 3D reduced model

to cover a larger region of interest. Azimuth and elevation

are normally the main decision variables used to generate

the tree but models that vary with frequency, range and

polarisation for example can be incorporated easily.

Space partition trees are designed to split an object into

its component parts in a manner that makes them easily

retrievable. If an object is split into N components, on

average log

2

(N) tests must be performed to establish the

correct component part to be used. For example, if an ob-

ject has 1000 component parts, an average of just under

10 tests must be performed. If we have the example ob-

ject space shown in �gure 17, the components 1 , 2 and 3

can be separated by the two lines a and b. The test pro-

cedure will be to determine whether the viewing position

lies either to the front or reverse side of the partitioning

line under consideration. Although Figure 17 shows
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Fig. 16. RCS of 3D reduced model

Fig. 17. Space partitioned model

the partitioning of a two dimensional space, the BSP Tree

technique will extend to n-dimensional space, where the

sub-spaces are divided by a structure of n�1 dimensions.

Therefore a three-dimensional world will be partitioned by

two-dimensional structures, i.e., planes.

The tree is constructed by recursively splitting the model

into sub-spaces using partition lines de�ned by the junc-

tions between the models. Components which lie on the

front side of the partitioning line are placed in the left

branch of the tree. The components in the remaining

sub-space are placed in the right branch. Figure 18 shows

the complete tree for the components in Fgure 17.

In a typical model, we can de�ne azimuth as running

from �180

�

to +180

�

and elevation from �90

�

to +90

�

.

We may then have a partitioning line de�ned as being, say,

5

�

in azimuth. If the front side of the line is de�ned as

being increasing angle, the models may be split about this

line forming the �rst division of the tree. Each branch is

then further sub-divided until there is only a single model

at each node. During run time, the �rst test to be made

will be to check if the missile position relative to the target

is greater than 5

�

. If it is then the left branch of the tree

is traversed, else traverse the right side.

Fig. 18. BSP Tree for Figure 17

IX. Conclusions

The work presented in this paper demonstrates that

sometimes the application of many small GAs may be

preferable to using one large and complex one. Attempts

to solve this model identi�cation problem with one large

algorithm have proved fruitless. The multiple algorithm

approach is robust and will provide repeatedly a solution

to the problem; even though some of the algorithms are

forced to converge, thereby limiting their potential. The

forced convergence gives more uniform operation with re-

spect to job execution times.

The method allows both two-dimensional and three-

dimensional images of low, medium, or high resolution to

be processed. The multiple algorithm approach gives the

model designer more 
exibility in applying constraints than

would be available from a single GA. The binary space

partition tree method for constructing compound models

allows scatterer models with di�erent complexities and cov-

erage to be accessed e�ciently. The multiple algorithm ap-

proach requires far fewer calculations than the traditional

iterative method and makes model generation viable on a

small system.
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