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ABSTRACT

Algorithms capable of performing efficient and controllable
many objective optimisation are becoming more necessary
as the complexity of optimisation problems to be solved in-
creases. This paper describes a new algorithm that combines
elements of traditional gradient based optimisation methods
along with a powerful many-objective capable search pro-
cess. The algorithm exploits the directed line search (such
as Golden Section Search) procedures found in many single-
objective gradient based algorithms in order to both explore
and exploit features in the optimisation landscape. The tar-
get vector and aggregation methods used in the MSOPS
algorithm have been employed to provide effective and con-
trollable many-objective optimisation, especially suited to
close interaction with a designer where it is often desired to
target specific regions of the Pareto front.
The Many Objective Directed Evolutionary Line Search

(MODELS) algorithm is demonstrated on a constrained func-
tion with a concave Pareto front in up to 20 dimensions and
is shown to outperform existing optimisers, some of which
are known to perform well for many-objective problems.

Categories and Subject Descriptors

I.2 [Computing Methodologies]: Artificial Intelligence

General Terms

Algorithms

Keywords

Multi-Objective, Many-Objective, Line Search, Golden Sec-
tion, Objective Boundary Identification

∗Dr Evan J. Hughes is a Senior Lecturer in the Sensors
Group

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

1. INTRODUCTION
As the optimisation of large problems in commerce and

engineering becomes more widespread, the need for optimi-
sation algorithms that can solve for multiple optimisation
criteria simultaneously is increasing. Although excellent al-
gorithms exist for optimising both single and small numbers
of objectives [3], issues with the simultaneous optimisation
of many criteria (4+) causes a significant number of the ex-
isting algorithms to under perform [6, 9].

Evolutionary methods have been developed that exploit
approximate gradient information from the objective func-
tion, however the question arises as to whether a method
can be developed that exploits local gradient information,
but for optimising many objectives simultaneously and cru-
cially, allows effective targeting of specific regions of the
search space by a designer.

Algorithms for multi-objective optimisation that combine
evolutionary methods and local search have been studied [11,
13, 10] however they either rely on calculating the full local
gradient, rely on Pareto ranking methods which do not scale
well with many objectives or do not allow full control of the
search regions by a designer.

In developing an algorithm for many-objective optimisa-
tion where a designer can have significant control of the
search directions, the behaviour of a single objective ‘stochas-
tic gradient optimisation’ algorithm has been studied to as-
sess the trade-off between population size, gradient estima-
tion and landscape search. The results have been applied
to create an effective algorithm for solving many-objective
problems.

Section 2 describes a single objective stochastic search al-
gorithm that can exploit local gradient and optimisation sur-
face structure and forms the basis of the many-objective al-
gorithm. Section 3 describes the many objective algorithm
in detail and sections 4 and 5 describe the results of the al-
gorithm performance experiments on problems with up to
20 objectives. Finally section 6 concludes.

2. LINE SEARCH METHODS

2.1 Introduction
In most conventional gradient-based optimisation meth-

ods, the algorithms first evaluate the local gradient of the pa-
rameter space of the function to be solved at a random start-
ing location in order to identify a search direction (‘down-
hill’ for minimisation, ‘uphill’ for maximisation) and then
perform a line-search in the identified search direction. The
line-search traverses the parameter space, attempting to iden-



Figure 1: Gradient-based line-search process show-
ing 4 iterations of gradient calculations and line
searches, each line search with 4 binary-chop evalu-
ations (17 evaluation points in total). The order of
the first 9 evaluations are indicated, with gradients
being calculated for evaluation 1, 5, 9 and 13

tify the point on the search line that has the minimum (or
maximum) objective value. The process of gradient calcu-
lation and line search is repeated, but now from the last
identified minima. The process is illustrated in Figure 1.
When gradient information is available, the size and di-

rection of the steps in the line search process may be made
adaptive using approaches such as Newton’s method [4]. For
problems where evolutionary methods are often employed,
such as problems with discontinuities in the gradient, a more
stochastic line search process may be employed where algo-
rithm robustness is traded against the amount of local land-
scape structure that is used.
This section first describes the generation of the search

direction and then line search methods. The section then
describes how constraints are handled in the search process
and how the length of line to search is generated. Finally
the use of a population of search points and directions is
investigated.

2.2 Generation of Search Direction
In classical gradient-based optimisation algorithms, if an

analytic description of the gradient is available, then the
calculation often requires approximately the same time re-
sources as an objective calculation. If an analytic descrip-
tion of the gradient is not available, then the local gradient
may be approximated numerically. For a given parameter
vector ~X, each parameter element, xi, is perturbed in turn
by a small quantity ∆xi and the objective function(s) eval-
uated. Given the changes in objective value and the pa-
rameter space step sizes taken, the component of the local
gradient in parameter i may be approximated as ∇fi(x) us-
ing (1), where ∆xi is a small value used to create as step in
the direction of parameter i only. Therefore for a problem
that has Nx parameters to optimise, Nx objective evalua-
tions will be required to establish the first-order approxima-
tion of the local gradient of a single parameter vector ~X.

∇fi(x) ≈
f(x)− f(x+∆xi)

∆xi

(1)

Although taking ~V as being the direction of steepest de-
scent (minimisation) is a good choice for simple unimodal

funtions, there are many cases where the optima forms a
‘long valley’ and the steepest descent approach can be de-
ceived into excessive ‘zig-zag’ behaviour. The problem can
be seen in Figure 1 where the first step is directed along the
steepest gradient, however due to the contours of the fitness
landscape, the first step is downward and to the right, rather
than towards the true optima.

As the proposed search algorithm applies aggregation func-
tions to the many objectives, the problem is transformed into
a set of single objective optimisation problems. In general,
as long as ~V is directed downhill (for minimisation), the op-
timisation process may proceed in a satisfactory manner. A
question arises though: in a multi-modal environment where
the local gradient direction could be reversed relative to the
global optima, what is the trade-off between the number
of function evaluations used to calculate the gradient com-
pared to other more approximate choices for the direction
to search next?

For problems with many decision parameters to optimise,
the computational overhead of full gradient calculations can
be very large. One approach to reducing computational bur-
den is to generate K random offset vectors ∆ ~Xi and then
evaluate the K fitness values from ~X+∆ ~Xi, ∀i ∈ K, giving
K approximations of the local gradient. The direction that
provides the steepest search direction can then be chosen for
~V (noting that the direction of −~V should be used if the gra-

dient indicated that the chosen ~V was uphill if minimising
etc.).

An alternative method that has been implemented within
the algorithm is to exploit the behaviour of the population
in a manner similar to crossover in evolutionary algorithms.
For a percentage of the time (80% in the algorithms used

for many-objective optimisation), ~V is chosen based on an
estimate of the local gradient and for the remaining time, the
search is biased towards other members of the population.

The approach is to choose C other population members
and generate the difference vectors between the current point
of interest and the selected population members. Currently
the choice of C members is uniformly at random from the
population, but bias could be introduced towards ‘fitter’ so-
lutions if desired. The distance to each of the C other so-
lutions is calculated and the closest chosen. The direction
vector to the chosen population member is normalised to
unit length and used to represent the search direction ~V .
By choosing the closest population member from a random
choice of C, if the objective surface is multimodal and the
population fragments into different local optima, then ~V is
more likely to be representative of good search directions in
the niche local to the current solution being explored. A
choice of C=4 has been employed to allow a degree of toler-
ance to multiple optima; the larger C, the less is the effect
of the steering behaviour.

2.3 Golden Section Search
A simple approach to the line search is to place the first

evaluation point at some distance from the point where the
search direction has been calculated. In Figure 1, point 1
is an example of the first random start point. The gradient
is calculated and point 2 is placed at some distance away
from point 1 in the direction of the search, indicated by the
arrow. A third point is now placed somewhere along the
line, between points 1 and 2.

Once the first 3 points have been placed, the line is now



Figure 2: Golden section line search. The end-points
1&2 are placed and then the bisectors 3&4 added. If
end point 2 is chosen to be removed, the new point 5
is added, maintaining the golden ratio. The points
may now be re-named and the process repeated it-
eratively

divided into two segments. One of the segments is now cho-
sen to be sub-divided further. The process of subdivision
can be repeated either until there is little change in the ob-
jective values calculated, or a given number of evaluations
have been performed. A new search direction can now be
generated and the process repeated.
A structured search method is to use a Golden-Section

process [11]. The golden section search is based on the
golden ratio which is determined by the scale factor of τ =
(1+

√
5)/2. The ratio is the solution to 1/x = x−1 and

τ ≈ 1.618 and 1/τ ≈ 0.618. The method operates as shown
in Figure 2 by placing the two line search end points (x1 and
x2) and then inserting two more points, their location based
on the golden ratio as described in (2).

x3 = x2−(x2−x1)/τ

x4 = x1+(x2−x1)/τ (2)

The search progresses by identifying which of the end-
points (x1 or x2) is the worst performing; the worst per-
forming point is then ‘removed’ and a new interval point
added. If end-point 2 was removed the new point would be
added between points x1 and x3 as indicated by location 5
in Figure 2, x4 would become the ‘new’ x2, x3 would be-
come the ‘new’ x4 and the added point would be labelled as
x3. The ratios between the four points is maintained, even
though only a single new point is added.

2.4 Constraint Handling
There are two forms of constraints that can be considered

in the search process. The first form are implicit constraints
which form the limits of each of the parameters and ulti-
mately define the parameter search volume; the second form
of constraints are explicit constraints, generally in the form
of inequalities to be satisfied.
The implicit constraints may be handled easily as shown

in Figure 3 by projecting the search line in the chosen direc-
tion ~V but only until an implicit constraint on the parameter
range is violated. Points 2 and 3 in the Figure show the lim-
its on line search in both the forward and reverse direction
defined by ~V . Figure 3 also indicates an explicit constraint
as the hatched region. Often it is not practical to calculate
the intersection of the search direction with the explicit con-
straints and hence they must form part of the optimisation
process.
The explicit inequality constraints are handled during the

line search process by selecting the line end points for ‘re-

Figure 3: Impact of constraints in parameter space:
point 1 is the current solution and ~V is the chosen
search direction. Point 2 is the furthest point in the
direction of ~V that still satisfies all of the implicit
constraints. Point 3 is the last point on the line in
the reverse direction of ~V that satisfies the implicit
constraints. The hatched region shows an explicit
constraint.

moval’ based on (a variant of a penalty based on feasabil-
ity [2]):

1. If both points are constrained by an inequality, then
the point which violates the inequality the least is su-
perior.

2. If one point violates an inequality and the other does
not, the non-constrained solution is considered supe-
rior

3. If neither point are constrained then the point with
the best fitness (lowest for minimisation, highest for
maximisation) is considered superior.

2.5 Determining Length of Line Search
When no explicit gradient information is used in order to

stop the line search process, it is most convenient to perform
each line search for a fixed number of function evaluations. A
difficulty arises in that although a search direction ~V can be
determined, the distance to search over is unclear. A strat-
egy has been adopted that sets the length of the search line
to lie between the minimum distance which corresponds to
the start point ~X and the maximum distance as determined
where the search line first violates an implicit constraint on
a parameter (e.g. point 2 in Figure 3).

In the early iterations (generations) of the algorithm, ex-
ploration is desired therefore the line search should investi-
gate solutions ranging from the minimum up to the max-
imum distance as defined by the implicit constraints. As
the algorithm progresses, it is important to restrict the dis-
tance of the line search closer to ~X in order to allow the best
identified solution to be fine-tuned.

The length of the line to search is first scaled so that
l ∈ [0, 1] corresponds to the range where l=0 represents the

location of ~X and l=1 corresponds to the intersection of
the search line with the implicit constraint boundary of the
parameter space (i.e. point 2 in Figure 3). The furthest point

on the line search is then calculated as ~X+ lDC
~V where DC

is the Euclidian distance from the point ~X to the boundary
of parameter space in the direction of unit vector ~V .

The desired line length l is drawn from a Beta distribution
(as a special case of a Dirichlet Distribution [1]) using a ratio
of Gamma distributed variables as described in (3), where
n is the number of the current algorithm iteration, NIT is
the maximum number of iterations and Gamma(β, 1) is a



random variable drawn from a Gamma distribution with
scale=1 and shape of β.

β = 2
(

1− n−1
NIT

)

γ1 = Gamma(β, 1)

γ2 = Gamma(1, 1)

l = γ1

γ1+γ2

(3)

When n=1, the line length l is drawn from a reverse-triangular
distribution (probability density rising from zero at l=0 to
density of 2 at l=1), leading to many long search lines in
the early phases of the algorithm. Half way through the
optimisation run (n=NIT /2) l is drawn from a uniform dis-
tribution. As n increases thereafter, the probability density
function that determines l appears with a shape similar to
an exponential distribution, leading to shorter line searches
and therefore exploitation of the local environment.

2.6 Population Vs. Gradient Vs. Line Search
A simple single-objective optimisation algorithm that ex-

ploits the line-search process whilst performing a global op-
timisation of multi-modal functions is:

1. Generate P random parameter vectors ~xi:
the set Q = {~xi, ∀i ∈ [1, P ]}

2. Evaluate the parameter vectors in set Q,
O = {f(~xi), ∀~xi ∈ Q}

3. For j = 1 . . . P

(a) Generate and evaluate K random offset vectors:

z = f( ~xj+∆ ~Xi), ∀i ∈ K

(b) Set ~Vj as the unit length vector in the direction

∆ ~X that gave the best value for z (if z is uphill,

for minimisation set ~Vj = − ~Vj)

(c) Draw a random line search length l from (3)

(d) Perform line search in direction of ~Vj starting at
point ~xj for a length of l. Record the location and
fitness of all NL points evaluated as part of line
search.

4. From the set of P×(K+NL) evaluations that were per-
formed during the gradient estimation and line searches
for the population, take the best P and use to replace
the current population in set Q and corresponding ob-
jective results in set O.

5. loop back to item 3 for NIT iterations until the de-
sired total number of function evaluations have been
performed.

6. Return the sets Q as the best identified solutions.

The total number of fitness evaluations is NEV = P (1 +
NIT (K+NL)), therefore the question arises as to how the
balance between the population size P , number of points for
the gradient estimation K and the number of points placed
during the line search NL should be chosen. As the three
parameters are varied, the number of search iterations NIT

(generations) will vary accordingly.
An experiment was conducted initially to establish the

best choice for K vs. NL, with the population size P , the
number of search iterations NIT and the total number of

evaluations held fixed. The experiment was conducted us-
ing the modified Griewank function [8] over a range of pa-
rameter vector sizes from 2 to 100 dimensions. The exper-
iments were also conducted for a range of population sizes
and maximum number of function evaluations. The results
were consistent in that the best results were obtained when
K ≤ Nx, often with K = 5 performing well for up to the
100 dimensional problem tested. For some very rough test
problems studied, K = 0 (i.e. choosing ~V as a random di-
rection) was superior, maximising NL the number of points
on the line search. The result was interesting in suggesting
that it is often better to expend function evaluations as part
of the line search, rather than to spend time in finding an
apparently good search direction. With a single objective
and a random search direction, there is still a 50% probabil-
ity that ~V will be in a ‘downhill’ direction and in the early
phases of the algorithm, the random search direction can
be considered similar to mutation in a classic evolutionary
algorithm and acts as an exploration operator.

Generally for non-trivial problems the algorithmically sim-
pler choice of K=0 provided adequate performance and for
simplicity of tuning and algorithm comparison K=0 has
been selected for use in the many-objective algorithm eval-
uation.

A second experiment was conducted to study the trade-
off between the population size and the number of points
used on the line search. For very small numbers of total
function evaluations (in the range of NEV ≤ 1000 func-
tion evaluations in total), a small population size of P ≤ 10
points was found to be beneficial for many problems. For
NEV > 1000, a population size of P = 1 was found to be
superior on all functions tested, even where the function is
highly multimodal. The use of P=1 and small value for K
provides effectively a stochastic version of the classic gra-
dient based algorithms, however the approach forms a very
capable global optimiser, rather than just the local optimi-
sation of the classical algorithms.

For the line search, the optimal number of points NL var-
ied, but was often in the range of 10 to 20 points. For all
of the many-objective experiments, 10 points were used for
the line search process.

3. MANY OBJECTIVE ALGORITHM

3.1 Introduction
For many-objective optimisation, the high dimensional

objective space causes issues with many fitness ranking ap-
proaches as not only does the percentage of non-dominated
solutions in any given population increase rapidly with in-
creasing dimensionality, but also even large population sizes
can only form a very sparse sample of the objective region [9,
6, 12]. The result is often that the optimisation algorithms
lose their effectiveness at progressing the solutions towards
the true Pareto front.

We can define a many-objective problem as:

Find ~X that minimises ~F ( ~X) = [f1( ~X), . . . , fNObj
( ~X)]

subject to:

~g( ~X) ≤ 0 := [gq( ~X) ≤ 0, ∀q ∈ [1, Ng]] (4)

~h( ~X) = 0 := [hw( ~X) = 0, ∀w ∈ [1, Nh]] (5)

where f() is one of NObj objective functions, g() is one of



Ng inequality constraints and h() is one of Nh equality con-
straints. In the remainder of this paper it is assumed that
all equality constraints have been converted to inequality
constraints by defining g( ~X) = h( ~X)− ε, where ε is a small
tolerance value.
In the many-objective space, the local gradient is now a

matrix of partial derivatives defined by the Jacobian evalu-
ated at point ~x.

J~x =











∂f1(~x)
∂x1

. . . ∂f1(~x)
∂xNx

...
. . .

...
∂fND

(~x)

∂x1

. . .
∂fND

(~x)

∂xNx











(6)

If an analytic solution exists for J~x then it can be exploited
to generate a search direction ~V by optimising ~V to max-
imise the gradient of the aggregated metric value, m in a
similar manner to the method described in [11]. The aggre-
gated value m is used to form the many-objective process
using the relationship in (7) where the function A(·) is the
aggregation function in a search direction determined by the
designer-supplied vector ~W .

m = A(J~x
~V T + ~F (~x), ~W ) (7)

3.2 Algorithmic Approach
To convert the single objective stochastic line search op-

timiser to solve many-objective problems, methods must be
incorporated to:

1. Drive a set of parameter vectors towards the true Pareto
Front.

2. Produce a useful sampling of the objective space that
can be controlled by a designer and focussed easily into
regions of interest.

The strategy that has been taken is based on the MSOPS
and MSOPS-II algorithms [5, 7] which use a set of ‘target
vectors’ to direct and control the search process. The target
vectors can either be supplied and controlled a-priori by
a designer, or established on-line during the optimisation
run. The distribution of the final solutions in the objective
space is determined by the spatial distribution of the target
vectors.
For the analysis of the algorithm in this paper, the set

of target vectors has been defined for convenience a-priori

before each optimisation run, rather than being established
dynamically during each run. Each target vector is cou-
pled with at least one aggregation function that turns each
objective vector into a scalar value for use in the optimisa-
tion process. The choice of particular aggregation functions
should be made to best suit the characteristics of the prob-
lem being optimised.
The algorithm operates by treating each target vector and

associated aggregation function as a single-objective optimi-
sation process and tracks the parameter vector ~X that best
optimises the aggregated objective values in the target vec-
tor direction. The ‘population’ is now the set formed by
the best solutions for each of the target vector/ aggregation
function combinations. The key element that distinguishes
the approach from a full optimisation of each target vec-
tor in turn is that the results from each line search that is
performed are used to update all of the target vector best

solutions, providing the benefit of a population based ap-
proach and allowing an estimate of the full Pareto front to
be generated in a single run of the optimiser.

3.3 Aggregation Methods
Each of the aggregated optimisations is directed by its

own vector of weights, or target vector. Thus the algorithm
uses a set of target vectors to search in parallel for solution
points that lie on the Pareto front. It is also possible to
combine searches in different directions, with different refer-
ence points, searches using different aggregation functions,
all within a single optimisation run. A key advantage is
the algorithm does not rely on Pareto ranking to provide
selective pressure.

As aggregation methods (eg. weighted min-max, ε-cons-
traint, VADS [5], goal attainment etc.) are very simple to
process, the calculation of each of the performance metrics is
fast. The different properties of different aggregation meth-
ods can be exploited easily and for the algorithm used in
this paper, one aggregation method has been chosen to be
used in each run of the optimiser, although the algorithm
can use many simultaneously. Weighted Min-Max has been
selected as it is aggressive at targeting points that lie on the
Pareto front.

3.3.1 Weighted Min-Max

The weighted min-max score of Nobj objectives is calcu-
lated using (8), where wi is the weight of the i

th objective fi,
m is the aggregated fitness value and Zi is the i

th component
of a utopia reference point.

m =
Nobj

max
i=1

(wi(fi − Zi)) (8)

Weighted min-max is able to generate points on both con-
vex and concave Pareto fronts. The weight vector corre-
sponds to a point on the Pareto front in the true direction
given by the vector ~T = [1/w1, 1/w2, . . .]. The Weighted
Min-Max metric is capable of identifying any point that lies
on the Pareto front, irrespective of whether the local topol-
ogy is concave or convex.

Multiple aggregation methods may be used during the
same optimisation process such as Vector Angle Distance
Scaling (VADS) [5]. The VADS metric is designed specif-
ically for identifying the Objective Front , rather than just
the Pareto front and complements the weighted Min-Max
approach well.

3.4 Algorithm Structure
The structure of the Many-Objective algorithm is similar

in nature to the single objective algorithm in section 2.6.
There are 4 key differences present however:

1. The size of the working population is determined by
the number of target vector/ aggregation function search
definitions

2. The size P of initial random population ~X vectors is
independent of the size of the working population and
may be as small as P=1, a single point if desired.

3. For each line search, the vectors of objective functions
are aggregated using the target vector and aggrega-
tion function of the current search direction and the
aggregated result m is minimised.



4. The search direction ~V is determined either at random
for 80% of the time, or biased towards other members
of the working population for the remainder.

The outline of the algorithms is as follows:

1. Generate NT search vectors ~ti:
the set T = {~ti, ∀i ∈ [1, NT ]}

2. Generate P random parameter vectors ~xi

Q = {~xi, ∀i ∈ [1, P ]}

3. Evaluate the parameter vectors in set Q,

O = {~f(~xi), ∀~xi ∈ Q}

4. For j = 1 . . . NT

(a) For q = 1 . . . P

i. Aggregate search vector ~tj with aggregation

function Aj() and objective vector ~Oq to form
vector of metric values for set Q:
mq = Aj( ~Oq, ~tj)

(b) Identify the best performing parameter vector ~x
in Q and corresponding objective vector in set O
for each target vector and record in set B:
Bj = arg min

~xi∈Q, ~Oi∈O

(mi, ∀i ∈ [1, P ])

5. Select index j uniformly at random from the range
[1, NT ]

(a) Generate unit length vector for the search direc-
tion either by

• biased from ~xj towards other members of the
population, or

• if K=0 generate ~Vj in a random direction, or

• Generate and evaluate K random offset vec-
tors: z = f( ~xj+∆ ~Xi), ∀i ∈ K then Set ~Vj

as the unit length vector in the direction ∆ ~X
that gave the best value for z (if z is uphill,

for minimisation set ~Vj = − ~Vj)

(b) Draw a random line search length l from (3),

(c) Perform line search in direction of ~Vj starting at
point ~xj for a length of l. Record the location and
fitness of all NL points evaluated as part of line
search into sets Q and O for the parameter and
objective vectors respectively.

6. For j = 1 . . . NT

(a) For q = 1 . . . NL

i. Aggregate search vector ~tj with aggregation

function Aj() and objective vector ~Oq to form
vector of metric values for set O:
mq = Aj( ~Oq, ~tj)

(b) Identify the best performing parameter vector ~x
in Q and corresponding objective vector in set O
for each target vector and record as structure b:
b = arg min

~xi∈Q, ~Oi∈O

(mi, ∀i ∈ [1, P ])

(c) If the metric value in structure b is an improve-
ment on the aggregated metric value currently
stored for search vector j, then replace the de-
tails in Bj with the newly identified solution in
structure b

(d) Return the set B as the best identified solutions.

7. loop back to item 5 for NIT iterations until the de-
sired total number of function evaluations have been
performed.

In the version of the algorithm used to generate results
for this paper, a target vector is chosen at random at each
iteration (line 5 of the algorithm). If desired, the target
vectors could be stepped through in turn or selected based
on the performance of the aggregated fitness.

For this paper, the target vector set is generated a-priori

using the approach described in [5], however the automatic
adjustment methods that are employed in the MSOPS-II
algorithm [7] can be incorporated successfully to remove the
requirement for a-priori selection of the search vectors.

4. PERFORMANCE COMPARISONS

4.1 Introduction
To determine the behaviour of the MODELS algorithm, a

sequence of experiments have been conducted and the results
compared to the same experiments conducted using, NSGA-
II, MSOPS and Random Search.

An objective function with a continuous concave Pareto
front that is defined by a constraint boundary has been cho-
sen to compare the performance of the algorithms as the
dimensionality of the objective space increases. The objec-
tive function has been selected so that it is conceptually
simple to solve and therefore reduces any bias that may be
encounterd from the different search operators of the indi-
vidual algorithms; the experiment is concerned with how
the performance scales with the number of objectives, not
how well different crossover and mutation operators suit the
fitness landscape.

In order to allow the NSGA-II algorithm [3] to converge
to a stable solution set for the higher dimensional prob-
lems, a population of 100 for 150 generations was employed
in NSGA-II and MSOPS. For MODELS and the random
search, a corresponding limit of 15000 function evaluations
was employed.

For the MODELS algorithm, 100 target vectors were gen-
erated, spread uniformly across the objective region and
each target vector was assessed using both the Weighted
Min-Max and VADS aggregation functions, leading to a to-
tal of NL = 200 points in the working population. For
the analysis, only the 100 solutions corresponding to the
Weighted Min-Max aggregation function were extracted.

The random search algorithm used is as follows:

1. Generate 100 search vectors ~ti
T = {~ti, ∀i ∈ [1, 100]}

2. Generate P = 15000 random parameter vectors ~xi

Q = {~xi, ∀i ∈ [1, P ]}
3. Evaluate the parameter vectors in set Q,

O = {~f(~xi), ∀~xi ∈ Q}
4. For j = 1 . . . 100

(a) For q = 1 . . . P

i. Aggregate search vector ~tj with aggregation

function Aj() and objective vector ~Oq to form
vector of metric values for set Q:
mq = Aj( ~Oq, ~tj)



(b) Identify the best performing parameter vector ~x
in Q and corresponding objective vector in set O
for each target vector and record in set B:
Bj = arg min

~xi∈Q, ~Oi∈O

(mi, ∀i ∈ [1, P ])

5. Return the set B as the best identified solutions.

The random search process reports the best 100 identified
solutions. The 15000 random points are generated uniformly
at random in the parameter space in the same manner as the
initial populations in all the optimisation algorithms.

4.2 Objective Function
For the algorithmic comparisons, an objective function

vector that has known scalability properties in objective
space has been employed. The objective is to minimise each
element of the parameter vector ~X, subject to a single ex-
plicit constraint and implicit constraints on each element of
the parameter vector. The set of objective functions form
a Pareto front along a constraint boundary comprising the
first n-orthant of unit hypershpere (and hence is concave).
If the distance from the origin to identified objective vectors
are grouped to form histograms, an ideal optimisation result
would have all solutions with a distance of unity from the
objective space origin.

f( ~X) = ~X

subject to:

g( ~X) ≥
√

∑Nobj

i=1 x2
i

xi ∈ [0, 1]∀i (9)

5. ALGORITHM PERFORMANCE RESULTS

5.1 Introduction
The four optimisation algorithms have been tested on the

hypersphere test function for a range of objective space di-
mensions from 2 to 20 dimensions. Each algorithm was run
for 100 independent trials on each of the different objective
space sizes. The MODELS algorithm used a Golden Section
line search with NL = 10 points on the line and an initial
population of P = 100.

5.2 Performance Comparison
All 100 output points from all 100 trials have been gath-

ered and analysed. The prime analysis has been to deter-
mine the distance of each output point from the true Pareto
front location. As the Pareto front is defined by a constraint
boundary that follows the unit hypersphere, the distance of
each output solution in objective space from the objective
space origin has been calculated; thus an ideal output would
have all 100 results in all 100 trials having a distance of unity
from the objective space origin.
Figure 4 shows histograms of the distance from the objec-

tive space origin of the 100 points output from the 100 trials
for the 4 algorithms overlaid. With each algorithm perform-
ing 15000 function evaluations, the 2D results show that all
of the algorithms are solving the problem very well, with
MODELS providing a slight advantage over MSOPS and
NSGA-II. All of the evolutionary methods are outperform-
ing the random search as expected, although the random
search is still performing very well due to the large number
of function evaluations employed. The spread of solutions
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Figure 4: Histograms of results of 100 output vec-
tors from 100 repeated trials of the MODELS,
NSGA-II, MSOPS and random search optimisers for
2D objective function
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Figure 5: Histograms of results of 100 output vec-
tors from 100 repeated trials of the MODELS,
NSGA-II, MSOPS and random search optimisers for
5D objective function

from all of the algorithms has been analysed and all of the
methods produce well spread results; the spread of results
in MODELS, MSOPS and the random search is determined
by the a-priori target set as expected.

Figure 5 shows the performance in 5D. All of the algo-
rithms are finding the problem harder and are of an almost
comparable performance in the order of MODELS is the
most accurate, followed by MSOPS, Random search and fi-
nally NSGA-II.

Figure 6 shows the performance in 10 objective dimen-
sions. The performance of the algorithms has degraded fur-
ther with NSGA-II being significantly worse than the ran-
dom search. MSOPS is still just outperforming the random
search but the MODELS algorithm is producing far superior
results to all of the other algorithms with a high proportion
of very near Pareto solutions still.

Figure 7 shows the performance in 20 objective dimen-
sions. The performance of the algorithms has degraded fur-
ther still with NSGA-II still being significantly worse than
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Figure 6: Histograms of results of 100 output vec-
tors from 100 repeated trials of the MODELS,
NSGA-II, MSOPS and random search optimisers for
10D objective function
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Figure 7: Histograms of results of 100 output vec-
tors from 100 repeated trials of the MODELS,
NSGA-II, MSOPS and random search optimisers for
20D objective function

the random search. The performamce of MSOPS is now
comparable to the random search but the MODELS algo-
rithm is again producing far superior results to all of the
other algorithms with a high proportion of very near Pareto
solutions still. Analysis of the 20D results has indicated that
the spread of solutions from the MODELS algorithm is be-
ginning to degrade, however in comparison to the output
of the other 3 algorithms, the reduction in diversity can be
tolerated.

6. CONCLUSIONS
A new algorithm designed specifically to optimise many-

objective problems and with mechanisms to exploit partial
gradient information within the search landscape has been
presented.

Repeated trials have indicated that the performance of
the algorithm is comparable to existing multi-objective op-
timisation approaches in low-dimensional objective spaces,
but can significantly outperform existing methods for higher
dimensional problems.

Software for the algorithms and files to allow the results
to be recreated are at http://code.evanhughes.org
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