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Abstract. This paper describes and demonstrates a new and highly innovative
technique that identifies an approximation of the entire bounding surface of the
feasible objective region directly, including deep concavities, disconnected re-
gions and the edges of interior holes in the feasible areas. The Pareto front is a
subset of the surface of the objective boundary and can be extracted easily. Im-
portantly, if the entire objective boundary is known, breaks and discontinuities
in the Pareto front may be identified using automated methods; even with high
objective dimensionality. This paper describes a proof-of-principle evolutionary
algorithm that implements the new and unique Direct Objective Boundary Iden-
tification (DOBI) method.

1 Introduction

The objective boundary is the ‘outside hypersurface’ of the hypervolume of the feasible
objective region in objective space. In its full form, it encompasses both maximisation
and minimisation of the objectives as demonstrated in Fig. 1a. The leading edge of the
objective boundary that is heading towards a utopia point of interest is the objective
front. Deep concavities in the objective front may be dominated, but are still viable
solutions. The Pareto front is the sub-set of non-dominated solutions, given a criteria of
minimisation or maximisation for each objective. If a solution is identified as belonging
to the objective front and is a minimal/maximal solution as desired, but is not part of
the Pareto front, then the solution must lie in a discontinuity of the Pareto front. Thus
regions which are true discontinuities in the Pareto front can be identified, rather than
just not knowing if solutions exist, but have not been identified by the Pareto-based
optimiser.

Many real engineering problems [1] require 4 or more objectives and optimisation
and visualisation of the results becomes difficult. Previous work has shown that iden-
tification of spot solutions on the objective front can yield useful information about
the structure of the Pareto front [2]. Additionally, any optimisation algorithms that are
intended for use in many dimensions must be capable of producing useful front approx-
imations as the problem dimensionality increases [3-5].

Regions of the objective space that have no feasible solutions associated are also of
interest. An algorithm that is attempting to identify the full objective boundary should
be capable of identifying the boundary of disconnected valid objective regions and also
identify the boundaries of ‘holes’ within feasible objective regions.



This paper describes a new and very unique algorithm that is designed to identify
the objective boundary directly for many-objective problems. The approximation of the
Pareto front can then be extracted from the results and analysed. The prime focus of this
research has been to see if a practical algorithm for direct identification of the objective
boundary could be demonstrated. The described algorithm can identify the boundaries
of convex and concave regions, disjoint regions and also identify the boundaries of large
‘holes’ within feasible spaces. The algorithm uses a normalisation process to allow
the search to be conducted easily in high-dimensional objective spaces and the paper
provides a theoretical basis for key elements of algorithm tuning.

2  Objective Boundary Definition

The objective boundary is the set of points that form the boundary of the feasible objec-
tive region. The objective boundary set is the corresponding points in decision space.
In objective space, points could be considered as interior, where they are surrounded
on all sides by other feasible points, or exterior which have at least one direction in
which they have no immediate neighbouring feasible solutions. Mathematically, the set
of exterior solutions & is a subset of the entire feasible objective set Q, £ C Q, and is
defined formally in (1); =
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ie. for each member of the set £ (the objective vector denoted as 3 ), there exists at least
one direction 77, which when examined over a small distance, dt, there are no solutions
in Q that form part of the feasible objective region. The definition is demonstrated
graphically in Fig. la where the directions in which no immediate neighbours exist
have been indicated.

3 Neighbourhood Assessment

In reality, the objective region is sampled by the optimisation process, rather than being
a continuous set around each point of interest. There are many possible approaches to
identifying which of the objective-space sample points are surrounded and therefore
interior. Common methods for reconstructing convoluted surfaces may be considered,
such as Delaunay Triangulation and level sets [6]. Delaunay Triangulation fundamen-
tally is the basis of many of the reconstruction methods and forms a connected net
between the observed valid points in the feasible region such that for any simplex in
the net (triangle in 2D, tetrahedron in 3D etc.) there are no points within the circumhy-
persphere of the simplex. The objective surface will form a subset of the faces of the
Delaunay triangulation. Unfortunately the computation of the Delaunay triangulation
with high numbers of objective dimensions (> 10) becomes very time consuming. For
computationally and theoretical simplicity, and also to provide a processing time that
is linear in the number of objectives, an alternative to hypersphere and Delaunay based
methods has been sought.

The concept of the new algorithm described in this paper is to assess the quality
of each solution by examining the largest empty hypercone (or an approximation to
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Fig.1. Left figure shows diagram of feasible objective solutions, showing the boundary that
forms the objective front (dashed), and also the Pareto front when the objectives are minimised
(Solid). The objective region shown has two disjoint feasible regions, one of which has a ‘hole’.
The figure shows a selection of feasible solutions and the directions in which there are no close
neighbouring solutions. The right figure shows a diagram of ideal conditions where neighbours
are distributed uniformly and densely on the surface of a hypersphere. Arc length d; and nearest-
neighbour angle 6 will be distributed exponentially. The angle « is between a test direction, 773,
and its nearest neighbour and « will also be distributed exponentially, but with half the mean of
the distribution of 6

the largest hypercone) that can be projected from the current point of interest (cone
vertex), out between the other valid points. The centre vector (axis) of the hypercone is
an approximation of the vector 77 in (1) and the directionality of the axis can be used to
assess how relevant the point under consideration is (for minimisation/ maximisation).
The nearer to the objective boundary that the point of interest lies, the greater the apex
angle of the largest empty hypercone becomes, i.e. a surrounded point can only fit a
very narrow cone between the other points identified in the objective region.

The definition in (1) does not provide an implicit description of an optimal solution,
i.e. an algorithm based on (1) would both minimise and maximise all objectives in one
run of the algorithm! It is sensible in practice to restrict the direction of vector 77 in (1) to
always point with a component in the direction of an ideal utopia solution, for example
if all objectives are to be minimised, then it would be sensible to constrain all elements
of the vector 7i to be negative, pointing to the ‘lower left’ corner of the optimisation
hyperspace. If some objectives are to be maximised, the preferred search direction can
easily be constrained accordingly.

Unfortunately finding the largest projected hypercone through a set of N-dimensional
points is itself not trivial and the calculation of an exact solution will rival the processing
required for the Delaunay triangulation of the set of points. Alternatively the identifica-
tion of the largest cone angle could be treated as an optimisation problem.

If a random unit-length vector 77 is chosen and projected from a point within the
objective space that is being assessed, then the closest point in angle from the remainder



of the set of objective points would form one vector which tracks the edge of an empty
hypercone (a generatrix of the hypercone). If a random search is conducted of cone axis
vectors m, eventually a vector 7 would be identified which is the axis of the largest
empty hypercone. Given that the probability of a random vector landing in a hypercone
is highest for the hypercone of interest (i.e. by definition the largest empty hypercone
has the largest solid angle), a simple random search could be employed.

In a 2D problem, if we consider a set of a large number of points distributed uni-
formly along a circular trajectory with a point-of-interest, P, at the cluster centre, we
may analyse the behaviour of the random search theoretically. Figure 1b shows a typical
configuration. If the distribution of the points are uniform along the circular trajectory,
then the arc-length between neighbouring points, and therefore the cone angles between
them will be distributed following an exponential distribution. Moreover, if we place a
test-point at a location on the circle selected uniformly at random, the segment length
and therefore the angle to the nearest neighbour solution will also be distributed expo-
nentially [7].

The exponential behaviour for nearest neighbour distances does however require
two assumptions to be satisfied:

1. The point density is sufficiently high so that the probability of observing the upper
limit on the angle § = 27 is very small,
2. the distribution of the points on the circle is from a uniform distribution.

The exponential distribution of the nearest neighbours is described by
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where f(x) is the probability density function with mean 1/\ and F(x) is the cumu-
lative distribution function that describes the probability of an observation from the
distribution being less than or equal to x. For the nearest neighbour distribution the an-
gle between neighbours will be distributed with Ay = N; /27, giving a mean angle of
6 = 27 /N;; where N is the number of points on the circular trajectory (N; = 14 in
Fig. 1b). For the angle « between a random test vector 17 (distributed uniformly within
the circle) and its nearest neighbour, the distribution of o will also be exponential, but
with a mean that is half of ; i.e. A, = N;/m. Although the theoretical analysis is for
points lying on a circle, as a uniform distribution of points on the surface of a hyper-
sphere may be generated by creating a vector with each axis drawn from the normal
distribution N(0,1) and then normalised to unit length [8], the theory will also hold
for the angles between a normally distributed cluster of points too, and in practice the
angles between points uniformly distributed in a cartesian region [9].

In practice, a cluster of 7+ points will provide a practical lower limit to producing
the anticipated exponential behaviour (assumption 1) as there is less than a 1 in 1000
chance of the exponential distribution ideally producing values greater than the maxi-
mum 6 = 27 limit (calculated from the cumulative distribution in (3)). If a Gaussian
mutation scheme is used within an evolutionary algorithm, often the localised distribu-
tion of neighbouring solutions is sufficiently uniform to satisfy assumption 2.



If we perform a random search by generating a series of test vectors, 7 and then
taking the maximum nearest neighbour angle, then we can determine the resultant prob-
ability density distribution of the maximum observed angle by transforming (2) and (3)
with the order-statistic formula [10]
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where N is the number of random samples taken and z is the order statistic of interest.
In this work we are interested in the maximum value and therefore z = N. Combining
(2) and (3) with (4) yields (5)
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where fn_(z) is the probability density distribution formed from taking the maximum
of N, angles and F'y, () is the cumulative probability distribution.
Thus a point can be assessed as being interior by:

1. Generating a random direction vector 1 and identifying the nearest neighbour in
angle space. The nearest neighbour is found by taking the dot/inner product be-
tween 1 and the difference vector between the point under consideration, P and a
set of N; points {@; : j € [1, N;]} which form a local neighbourhood around the
point P. The dot product (if 772 and the difference vector are unit length) yields the
cosine of the angle between the vectors. The smallest angle (largest cosine) is the
nearest neighbour;

2. The process repeated for a different random unit length vector 1 and the largest
overall observed neighbour angle (smallest cosine) and corresponding vector 17 are
recorded.

The method is described mathematically as
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The resultant angle « can then be considered as being associated with interior or
exterior points by recognising that the cumulative probability distribution Fyy,_ () in
(6) can be used to determine a threshold level for the observed angle. If the value of
a needed to give Fy_ (o) = 0.95 is found and used as a threshold, then there is a
95% probability that a point that is truly an interior point will be correctly classified
as interior. The method can be verified experimentally and is accurate as long as the
assumptions of sufficient point density and uniform distribution are observed (software
that performs the experimental verification of the CDF is available at [11]).

Unfortunately the ideal case of being able to assess explicitly whether a point is
exterior is not practical, as the probability density distribution of exterior points will



vary depending on the degree of convexity of the objective front local to the point and
is unknown and not trivial to observe. Practically, the threshold that can be calculated for
interior point acceptance is sufficient to create a useful algorithm. If a higher threshold
level (e.g. 99%) is set, the algorithm is more aggressive at classifying points as interior.

4 Extension to Many-Objectives

As the dimensionality of the objective space is increased, the apex angles of the largest
empty hypercones that can be fitted between a set of points also tend to increase. Thus
instead of specifying the limit on the smallest apex-angle before solution cropping, an
alternative strategy has been employed that allows the apex angle to be normalised into
a common space, removing any issues associated with objective space dimensionality.
If a hypercone is projected through a hypersphere, the region of the hypersphere
surface that is contained within the cone is a hyperspherical cap. The normalisation
is obtained by transforming the observed cone angles into the ratio of the area of the
hyperspherical cap to the total hypersphere area. The key observation of this transfor-
mation is that even in very high dimensional spaces, the distribution of the hyperarea
ratios between nearest neighbours still follows the exponential distribution theory for
nearest neighbours that was observed in the two-dimensional case. For example, in two
dimensions, in Fig. 1b, if the circle is unit radius, the arc length between the two neigh-
bours is the hyperspherical cap and d; may be transformed into a ratio R = d; /2.
Equations 8 and 9 provide the description of the hypersphere and hyperspherical
cap areas [12] for a hypersphere of radius 7, and (12) describes the ratio of the areas,
based on the axis-to-generatrix cone angle o as shown in fig. 1b; where o would be
used to calculate the ratio of the arc ds to the total circumference. It is clear that to
calculate (12), the processing requirement is linear in the number of objectives, n.
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The largest angle observed by the random sampling process can be converted to a
ratio R using (12) and then the ratio compared against the limit calculated from (6)



(with x representing ratio not angles) to test whether the point is interior or not. The
configuration for many-objectives is the same as for the 2D case with A = NN; forming
the shape parameter of the exponential distribution and N, being the number of random
samples used to estimate the largest cone angle (and therefore ratio). In practice, condi-
tions of Ng/N; < 1/2 and N > 7 are sufficient to ensure that the assumption that the
distribution is exponential is valid. A local neighbourhood is best formed by selecting
the IV; nearest neighbours using Euclidian distance in the objective space. If the local
neighbourhood is small (e.g. in range 25 to 100) then the assumption that the points
used for comparison follow a uniform distribution in the single dimension ratio space
is also usually satisfied. The ratio R can also be used in the fitness assignment process
to determine solution quality, with points having larger ratios being more ‘interesting’.

5 Solution Spreading and Front Maintenance

As with most multi/many objective optimisation algorithms, some means of spreading
the solutions evenly across the objective boundary is needed. Naturally, the solutions
will tend to prefer convex regions if the ratio R alone is used as a selection criteria. For
demonstration purposes with the proof-of-principle algorithm, a simple sharing mech-
anism has been employed. The sharing mechanism is to calculate the total weighted
Euclidean distance to the N; neighbouring solutions. The Euclidean distance to the V;
neighbours is needed in order to normalise the difference vectors for angle and ratio
calculations, therefore the sharing calculation overhead is little more.

The sharing function is defined in (13), where F(i) is the shared fitness of solution
1, T is the set of IN; local solutions (including solution P), R; is the transformed ratio
for solution 4, o is the standard deviation of the sharing function and d;; is the Euclid-
ian distance between solutions ¢ and j. As solution ¢ will be compared with itself, the
denominator of (13) will always be at least unity.

Fy(i) = o (13)
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The distance d;; may be calculated in either objective or decision space, however
for the proof-of-principle algorithm, only objective space sharing has been applied. For
sensible sharing distances to be generated, it is advised to scale each of the objectives
appropriately; in real engineering problems, this scaling information is often available.

All of the solutions that have been generated by the evolutionary algorithm so far
are sorted so that the feasible solutions with the highest shared fitness are at the start of
the list, and then any constrained solutions are appended after the list of sorted feasible
solutions. The constrained solutions are sorted based upon their worst degree of con-
straint violation, i.e. each solution has a vector of constraint violations, with negative
values indicating a violated constraint. The more negative the violations, the further the
solution is from the constraint boundary; the minimum value of the constraint vector is
used for solution sorting.



6 Evolutionary Algorithm Structure

A mutation only, evolutionary process has been employed, with an incremental struc-
ture. Each generation, the 100 top solutions are chosen from the sorted list of all solu-
tions evaluated. These solutions are mutated with a normal distribution in each dimen-
sion. The standard deviation of the mutation is initially %th of the range of each decision
variable, and the standard deviation is reduced by 10% each generation (i.e. multiplied
by a factor of 0.9). To estimate the hypersphere ratio, a random search size of N; = 10,
local sample size of N; = 25 and o5 = 0.001 have been applied.

To reduce the computational effort, the hypercap ratios of most of the interior and
a proportion of the crowded solutions are not evaluated each generation. Points that are
considered as interior are not removed completely; they are marked as constrained but
given a 50% probability of being selected for ratio re-calculation on the next iteration.
If the point is still considered interior then its probability of re-calculation is reduced
by a factor of 50% to 25% etc. Heavily crowded points are also marked as constrained
but given a probability of 50% of being reconsidered on the next algorithm iteration.

By maintaining all solutions generated so far as possible candidates for future muta-
tions, the algorithm does slow with increasing numbers of generations. However by not
forgetting where previous solutions have been generated, the algorithm builds a good
approximation to the objective front in few generations. The algorithm is best suited
to initial coarse exploration of unknown problems to identify the underlying objective
space structure and identify regions which warrant more focussed investigation with
Many-Objective algorithms such as MSOPS-II [2].

7 Example Behaviour Results

As a demonstration of the behaviour of the algorithm, the Tanaka objective function has
been used (detailed in [2]) but with an added constrained region of a small circle centred
at (0.3 0.2) in the plots. Two runs, both for 50 generations have been conducted. The
first run has no restriction on the direction of the boundary search and has identified the
entire objective boundary, while for the second run, a preferred direction corresponding
to minimisation has been imposed by restricting the components of m in (7) to be
negative. Figure 2 shows the locations of the evaluated and classified solutions for the
two conditions.

Figure 3 shows a comparison of the DOBI algorithm to other state-of-the-art meth-
ods. The test function has a Pareto front formed by a constraint boundary comprising
the unit hypershpere (and hence is concave). The distance from the origin to identified
objective vectors have been grouped to form histograms; an ideal case would have all
solutions with a distance of unity. The results show clearly that the DOBI algorithm can
be competitive in low dimensions and is superior for many-objective problems.

Rigourous statistical verification of the prototype algorithm behaviour is at present
on-going; there are no existing metrics that allow the performance of the algorithm to
be examined, and no other algorithms are capable of developing the entire objective
boundary. For example the closest contender MSOPS-II can only form a limited objec-
tive front; it is not capable of identifying interior regions without a-priori knowledge of
their location.
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Fig. 2. Output of the prototype DOBI algorithm for the modified Tanaka function. The left plot
shows the behaviour when the boundary search is unrestricted and the entire objective boundary
is identified. The right figure shows the output when a restriction of minimisation is placed on
the algorithm. In both plots, the convex/ concave regions of the objective front and the hole in
the feasible region have been identified correctly. The light points are constrained solutions, mid
grey are classed as interior and the black points are classed as exterior.
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Fig. 3. Histograms of Pareto front distance for 5000 solution points from multiple runs on a unit
hypersphere function of NSGA-II, MSOPS-II, DOBI (with restricted boundary search) and a
random search . The left plot shows the behaviour for the 3-objective configuration; MSOPS-II
and NSGA-II provide indistinguishable results with the DOBI algorithm a close 3. The right
plot shows the performance with 6 objectives. The DOBI algorithm is clearly superior, with the

performance of NSGA-II falling as anticipated.



8 Conclusions

This paper has introduced a new and unique concept for an algorithm that is capable of
identifying the entire boundary of the feasible objective space, even with internal holes,
in many objective dimensions. The theory behind the exponential distribution of hyper-
spherical cap ratios has been introduced and used to construct a prototype evolutionary
algorithm capable of unparalleled exploration behaviour.

By using a small random search and a normalisation into hyperspherical cap ratio
space within the evolutionary algorithm, the time complexity of the search scales lin-
early with the number of objective dimensions, unlike Delaunay-based methods which
become impractical for even moderate dimensionality. Prototype algorithm software
that will re-produce all of the results in this paper is available for academic use at [11].
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