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Abstract. In complex engineering problems, often the objective functions can
be very slow to evaluate. This paper introduces a new algorithm that aims to pro-
vide controllable exploration and exploitation of the decision space with a very
limited number of function evaluations. The paper comparesthe performance of
the algorithm to a typical evolutionary approach.

1 Introduction

Multi-Objective Evolutionary Algorithms [1] are becoming a well established technique
for solving hard engineering problems. Like all optimisation algorithms they were first
developed when processing resources and memory were scarce. As the use of opti-
misation algorithms migrates deeper into industry, and with more processing power
available, the scale and characteristics of the problems being solved are changing. The
objective functions are becoming more complex and consequently can take a long time
to evaluate.

Problems such as aerodynamic optimisation and electromagnetic simulationoften
rely on finite element methods in order to simulate the systems of interest. These sim-
ulations can take from seconds to hours to run. The better the resolution and fidelity
required, the longer the simulation time.

Many of the problems are highly multi-modal and so gradient based optimisers do
not perform well. Unfortunately, with long simulation times, eithersmall population
sizes must be used within an evolutionary algorithm, or the algorithm must be run for
a reduced number of generations in order to keep the total processing time within rea-
sonable bounds. In both gradient based searches and evolutionary algorithms, every
iteration or generation, the results of previous objective calculationsare discarded to
reduce processing and storage costs.

For example, a simple aerodynamic simulation takes 10 variables, producestwo
objectives and one constraint, and requires 1 hour per evaluation. An evolutionary algo-
rithm with a population of 20 for 100 generations would take over 83 days to complete.
With some multi-objective algorithms (e.g. NSGA and MOGA) only 20points on the
Pareto surface could be generated per generation. Algorithms such as SPEA with an
external store for the Pareto set could retain more points. A Pareto surface would need
to be generated from every point that was evaluated in the run of the evolutionary al-
gorithm to make sure that no points had been lost. To confine the problem to a more



realistic time scale, only about 500 points could be generated, taking nearly 21 days to
complete. Generating only 500 evaluations is equivalent to a population of 20 for 25
generations only, not much for many evolutionary multi-objective optimisation algo-
rithms.

This paper proposes a new algorithm that is designed specifically to provide con-
trollable exploration and exploitation, but with few objective calculations. The new al-
gorithm uses many of the techniques developed for multi-objective evolutionary al-
gorithms to guide the search process. The algorithm is not generationalhowever and
utilises all the objective calculations made when deciding where to place thenext point
in the hypercube that defines the search space.

This paper describes two approaches to implementing the idealised algorithm. The
first uses Voronoi decomposition to locate the exact centre of the largestempty hyper-
sphere in each case, but is computationally expensive for even moderate numbers of
variables. The second algorithm is the prime focus of the paper and uses binary space
subdivision to approximate the unexplored regions, producing afaster and more scal-
able algorithm.

Section 2 describes the ideal search algorithm, section 3 discusses multi-objective
optimisation, section 4 details one approach to implementing the ideal algorithm us-
ing Voronoi diagrams and section 5 details an alternative implementation using a bi-
nary search. Section 6 describes the two multi-objective test functions used, section 7
presents results of the optimisation trials and a comparison with a typical evolutionary
approach, and section 8 concludes.

2 The Ideal Algorithm

2.1 Introduction

The idealised algorithm is:

1. Exploration: Next point is the centre of the largest empty convex region.
2. Exploitation: Next point is the centre of the largest empty convex region that has

a selectedgood point at one edge.

The aim of the idealised algorithm is to reduce the size of unexplored regions, re-
sulting in uniform search coverage, while still being able to focus on the areas forming
the Pareto surface. With only a limited number of function evaluations available, every
evaluation must count.

2.2 Exploration

The exploration search step of the algorithm identifies the most unexplored region of
the search hypercube, and places the next point at the centre of the region. The region
could be described in a number of ways, the ideal being to find the largest convex
region that will reside between the existing evaluation points. Sections 4 & 5 describe
two alternative methods for approximating the most unexplored region.



2.3 Exploitation

The exploitation step involves first identifying a good point. Inboth algorithm imple-
mentations presented in this paper, tournament selection is used to identify agood point
for a localised search to begin from. Once a point has been selected, the largestunex-
plored volume that contains the point at its edge is identified, and a newevaluation
generated for the point corresponding to the centre of the volume.

2.4 Exploration versus Exploitation

The two phases of the algorithm, exploration and exploitation, must be controlled in
order to provide effective coverage of the decision space. The algorithm must begin with
an exploration phase to allow interesting regions to be identified, then the exploitation
phase can be applied to refine the regions. As noted in most evolutionary algorithms, it
is wise to always have a low level of exploration, even in the exploitation phase.

In evolutionary algorithms, the initial population provides pure exploration. The se-
lective pressure and crossover in subsequent generations provide exploitation, with a
low level mutation providing exploration of the decision space throughout the remain-
ing optimisation process.
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Fig. 1. Probability of performing exploration for C=0.1, K=0.3,� = 0:1 and 1000 trials.

In both the algorithms presented, at each iteration the decision of whether to per-
form exploration or exploitation is made based on a probability distribution,P (n), that
varies with the number of function evaluations,n. The distribution is detailed in (1) and
illustrated graphically in Fig.1. In (1),C is the minimum probability of performing an
exploration step,� is the rate at which the probability of exploration decays (smaller�

gives faster decay), K is the mid point of the decay (midpoint of the range[C,1]) and
n

x

is the maximum number of trials that are to be performed. Note, in Fig.1, C is not
zero and so the point marked forK does not occur at 300 as would be the case ifC = 0.
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3 Multi-Objective Optimisation

Much research has been performed on discriminating between members of a Pareto
set to allow the entire Pareto set to be approximated in a single run of an evolutionary
algorithm. In an evolutionary algorithm, the Pareto set may either be maintained within
the base population (NSGA, MOGA, etc.) or externally (SPEA, PAES, etc.)[1]. For the
methods that use the population to store the set, a large populationsize is required to
provide sufficient sampling of the Pareto surface.

A Pareto ranking method is required to allow ‘good’ solutions to be chosen. In the
algorithms described in this paper, with the small number of evaluations used,all the
points generated in the run of the optimiser will be used to create the final Pareto sur-
face. Methods that do not maintain an external store of the Pareto set will beused in
the examples as at each iteration of the algorithm, all the points that satisfy the con-
straints created so far will be accounted for. If larger numbers of evaluations are to be
performed, only the solutions in the current tournament set need to be ranked. This ap-
proach will lead to reduced performance, but the processing overhead of the algorithms
will scale better with increasing function evaluations.

4 Voronoi Optimisation Algorithm

4.1 Largest Empty Convex Region

The idealised algorithm in section 2 relies on being able to identify the largest empty
convex region either in the entire search space, or with a chosen point at itsedge. Fig-
ure 2 shows a 2D Euclidean plane representation of the largest empty convexregion
between a set of points in the decision space. The region may be approximatedby find-
ing the largest empty hypersphere that can be placed between the existing points. The
new point would then be generated at the centre of the hypersphere. Finding the centre
of the largest empty hypersphere is still not a trivial problem to solve.

Fig. 2. Largest empty hypersphere



4.2 Voronoi Diagrams

TheVoronoi diagram [2, 3] can be used to identify the centre of the largest empty hy-
persphere. A typical Voronoi Diagram is shown in Fig. 3 with the largestempty circle
indicated. The centre of the largest empty circle will always coincide with either a
Voronoi vertex, or a vertex generated by the intersection of the Voronoi diagram with
the convex hull of the set of points.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Fig. 3. Example Voronoi diagram showing how centre of largest emptyhypersphere lies at a
Voronoi vertex

The Voronoi diagram divides a hyperspace containing points into regions, each re-
gion surrounding a single point. The space is divided so each point is associated with
the region of space closest to it. IfP = p
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The Voronoi diagram is formed as the boundaries of the set of Voronoi regions. The
Voronoi edges are points on the plane that lie on the boundaries of theVoronoi re-
gions and will be by definition equidistant from two sites. A Voronoi vertex is formed
at the junction of multiple Voronoi edges. The generation of Voronoidiagrams is com-
putationally expensive and so direct use is only really possible for problems with low-
dimensionality. Indirect calculation of the Voronoi diagram is still slow but can lead to
useful optimisation systems [4].

In all the optimisation algorithms used in this paper, the full rangesof the parameter
optimisation in each dimension are mapped into a hypercube with each side having the
limits of [0,1]. This mapping scales each of the parameters with respect to their mini-
mum and maximum values, allowing unbiased Euclidean distances to be calculated.



To simplify the processing for finding the largest empty hypersphere,a point is
placed at each corner of the hypercube in the decision space, simplifying the calculation
of the intersection of the Voronoi diagram with the convex hull of the points. The next
point is then placed uniformly at random within the hypercube, allowingthe Voronoi
diagram to be generated and the optimisation process to begin. With a 10 dimensional
problem, the hypercube has 1024 corners, therefore 1025 points wouldbe required in
the initial sampling of the decision space. In practice, for many engineeringproblems
that are to be optimised on a single processor, the direct Voronoi approach is limited
to problems with less than 10 dimensions due to a rapid expansion of computational
complexity with increasing dimensionality. With multiple processors, the objective cal-
culations and calculation of the Voronoi diagram can be ‘farmed’ out to the next free
processor, or a slightly sub-optimal approach can be used of generating a small set of
points, one for each processor, from each Voronoi diagram.

5 Binary Search Algorithm

Although the Voronoi approach gives a very neat and near optimal algorithm, the com-
putational complexity for high dimensionality problems is immense.An alternative
strategy has been developed that uses a binary search tree [5] to divide the search space
into empty regions, allowing the largest empty region to be approximated. The search
tree is constructed as shown in Fig. 4 by generating a point within the chosen hyper-
cube, then dividing the hypercube along the dimension that yields the most ‘cube-like’
subspaces. The definition of ‘cube-like’ is the split that minimises (3), whered

max

is
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Fig. 4. Binary search process

The ideal algorithm in section 2 has been modified for the binary search tree thus:



1. Exploration: Next point is generated within the largest empty region,
2. Exploitation: Next point is generated within the largest empty region that is within

a small distance of a selectedgood point.

When the region with the largest area is identified for exploitation, apoint is gen-
erated at random that lies within the bounds of the region. For this paper, the point
is generated with a normal distribution about the mean of the region axesin each di-
mension. The normal distribution is scaled so that each dimension of theregion is�4
standard deviations wide.

The identification of a local region for exploitation is illustrated in Fig. 4. A small
offset distanced

p

is used to generate a hypercube of interest about the chosen point
(chosen with tournament selection). The small hypercube is placed around the point
of interest simply to provide an efficient means of identifying neighbouring regions. A
new point is then generated at random using a normal distribution in the largest region
that intersects the hypercube. For a regionA to intersect the hypercube about the point
P , (4) &(5) must not be satisfied for any dimensioni, whereA
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As the tree is traversed, the subspaces of the higher order nodes (say upper subspace of
node 2, marked with a cross in Fig. 4 for example) are also tested. If the subspace fails,
all the child nodes of the subspace can be ignored.

At each iteration, the tree search to find the largest empty region is at worstO(mn),
wheren is the number of evaluation points so far andm is the number of dimen-
sions. The tree pruning can lead toO(mlog(n)) performance for exploitation, and
at worstO(mn). Thus the computational explosion associated with the Voronoi ap-
proach is avoided. Overall, the computational complexity for the binary search is at
worstO(mn

x

4

) if a Pareto ranking method ofO(n

2

) is used to rank all the points.
If only the members of the tournament are ranked, the computational complexity will
be betweenO(mlog(n)

2

) andO(mn

2

), depending on how much exploitation is per-
formed.

6 Test Functions

For the trials in this paper, two multi-objective test functions have been used. The test
functions both have concave Pareto sets, with one also being discontinuous. Both test
functions are detailed in [6] and are given in (6) and (7). It should be noted that for (7),
the decision space and objective space are co-located, with the Pareto set being defined
by the intersection of two constraint boundaries. Thus points can appear in the objective
space on the lower side of the Pareto set, but these points violate the constraints and as
such are not acceptable.
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7 Experimental Results

Both of the optimisation algorithms described in the paper have been trialed on the
two test functions. For comparison, a typical multi-objective evolutionary strategy has
been used, and constrained to generate the same number of sample points. In all three
algorithms, NSGA [1] has been used at each iteration (and correspondingly generation
for the evolutionary strategy) to perform the Pareto ranking of theobjective values
generated so far that meet all the constraints. Only the Pareto ranking elementsof NSGA
are required for the Voronoi and binary algorithms. The same�

share

= 0:05 has been
used for consistency. The ranking algorithm of NSGA is well suited tothe Voronoi and
binary search techniques as the Pareto set is held within the ‘population’ being ranked.
Alternative methods based on SPEA, PAES [1] are less well suited to thisapplication as
they rely on holding the Pareto set externally. However, although SPEA and PAES have
been demonstrated to out perform NSGA on many optimisation problems when used
in an evolutionary algorithm, they still search with objective calculation distributions
very similar to NSGA. Thus in this trial, only the point generation process is different
for each of the algorithms, demonstrating how the point distribution is controlled in the
new algorithms to give a much wider search with fewer unexplored regions.

The evolutionary strategy had a population of 20 and ran for 24 generations, giving
a total of 500 evaluations (including the initial population). A crossover rate of 0.7
was used with real-valued intermediate crossover. The initial standard deviation of the
mutations was set to one eighth of the range of each parameter, and then allowed to
adapt during the run.

For the Voronoi and binary search optimisation, a total of 500 pointswere generated,
with the exploration and exploitation parameters set toK = 0:04,C = 0:02 & � = 0:1

and a tournament size of 10. For the binary search optimisation, the localexploitation
hypercube was set to be�0:02 in each normalised dimension.

Figures 5 & 6 show the objective and decision space for (6), the first testfunction
and Voronoi optimisation. In Fig. 6 the regular pattern outside ofthe region of the
optima is very clear, demonstrating well controlled and uniform exploration. The tight
clustering around the centre of the plot corresponds to the Pareto set andthe exploitation
phase of the algorithm.
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Fig. 5. Objective space for equation 6 and Voronoi Optimisation
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Fig. 6. Decision space for equation 6 and Voronoi Optimisation

Figures 7 & 8 show the objective and decision space for (7), the second testfunction
and for Voronoi optimisation. Again, the regular pattern, created during the exploration
phases, outside of the region of the optima is very clear in Fig. 8. The tight clustering in
the lower left corner of the plot corresponds to the Pareto set and the exploitation phase
of the algorithm. The non-convex and discontinuous Pareto set is clear in the plot. The



light coloured points also indicate the region of the plot which is constrained. It is
interesting to note that the boundary between the constrained and feasibleregions that
form the Pareto set has been explored in detail, providing an accurate approximation to
the Pareto set.
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Fig. 7. Decision and Objective space for equation 7 and Voronoi Optimisation
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Fig. 8. Decision and Objective space for equation 7 and Voronoi Optimisation



Figures 9 & 10 show the objective and decision space for (6) and binary search
optimisation. The regular pattern outside of the region of the optima is not quite as clear
as with the Voronoi approach, but is still well defined and demonstrates a controlled and
uniform exploration. Again we see a tight clustering around the centre of the plot which
corresponds to the Pareto set and the exploitation phase of the algorithm.
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Fig. 9. Objective space for equation 6 and Binary Optimisation

Figures 11 & 12 show the objective and decision space for (7) and binary search
optimisation. Again, the exploration pattern outside of the region of the optima is clear
with most of the unexplored regions being of a similar size. The tight clustering in the
lower left corner of the plot again corresponds to the Pareto set and the exploitation
phase of the algorithm. The non-convex and discontinuous Pareto set is clear in the
plot. The light coloured points indicating the region of the plotwhich is constrained
also show that the regions that form the Pareto set have been explored indetail.

Figures 13 & 14 show the objective and decision space for (6) and optimisation
using a multi-objective evolutionary strategy. There is no regular pattern outside of the
region of the optima and there are some large unexplored areas near the top of the plot.
This demonstrates that the exploration is not as controlled or as uniform with the low
number of sample points used in the experiment. Again we see a clustering around the
centre of the plot which corresponds to the Pareto set and the exploitation phase of the
algorithm, but here the cluster is very loose and ill-defined.

Figure 15 shows the objective / decision space for (7) optimised withthe evolution-
ary strategy. The exploration pattern away from the Pareto set is clear, but has large
unexplored regions. The Pareto set is patchy and the constrained regionin the lower left
corner has been searched more heavily than the other constrained regions, butnot in a
controlled way near the Pareto set. This bias in part due to the performance of NSGA.
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Fig. 10. Decision space for equation 6 and Binary Optimisation
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Fig. 11. Decision and Objective space for equation 7 and Binary Optimisation

The location of the Pareto set is not as accurate and well defined as with either the
Voronoi or binary search optimisation algorithms.

To quantify the ability of the algorithms to identify points on the Pareto set, 100
trials of each algorithm for each objective were performed and the number of distinct
points on the final non-dominated set recorded. Table 1 shows that the Voronoi op-
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Fig. 12. Decision and Objective space for equation 7 and Binary Optimisation
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Fig. 13. Objective space for equation 6 and Evolutionary Strategy

timisation algorithm is by far the most effective at identifying non-dominated points,
with the binary search algorithm a close second. Experiments have also shown that the
algorithms are well suited to problems where up to10; 000 points or more are to be
generated.
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Fig. 14. Decision space for equation 6 and Evolutionary Strategy
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Fig. 15. Decision and Objective space for equation 7 and Evolutionary Strategy

8 Conclusions

This paper has introduced the concept of a new idealised search algorithm and two
methods for approximating it, for problems where very few objective calculations can
be performed. The results have shown that both the Voronoi and binary search ap-



Table 1. Number of distinct points on Pareto set over 100 trials.

Algorithm Function Minimum Mean Maximum�

Voronoi (6) 170 194.9 221 10.5
Binary (6) 147 170.0 174 6.7

ES (6) 74 98.4 122 11.3
Voronoi (7) 56 65.9 75 3.6
Binary (7) 13 28.8 37 4.2

ES (7) 8 17.2 27 3.9

proach allow full, independent control over the exploration and exploitation phases of
the search. The exploration phase is designed to give uniform coverage of the search
volume by targeting unexplored areas directly. The exploitation phasegives uniform
coverage in ‘good’ areas by targeting unexplored regions close to points that perform
well. The algorithms exploit multi-objective techniques developed for evolutionary al-
gorithms and can handle multiple objectives and constraints easily for problems with
multiple variables.

The research has also shown that for problems with very few parameters, the Voronoi
search algorithm performs the best when compared to the binary search optimisation
and a typical evolutionary solution. The computational complexity increases rapidly
though for the Voronoi approach when the number of variables is increased.The bi-
nary approach scales linearly with an increasing number of dimensions, allowing large
problems to be tackled. The research demonstrates how the two new algorithms exploit
the information from all the evaluations performed to give much morestructure to the
location of trial points when compared to a typical evolutionary approach.
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