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Abstract. In complex engineering problems, often the objective fiomst can

be very slow to evaluate. This paper introduces a new algaorthat aims to pro-
vide controllable exploration and exploitation of the déan space with a very
limited number of function evaluations. The paper compénreperformance of
the algorithm to a typical evolutionary approach.

1 Introduction

Multi-Objective Evolutionary Algorithms [1] are becoming a wellaslished technique
for solving hard engineering problems. Like all optimisation aldonis they were first
developed when processing resources and memory were scarce. As the use of opti
misation algorithms migrates deeper into industry, and with moregssing power
available, the scale and characteristics of the problems being solved arencharigs
objective functions are becoming more complex and consequently can takg tinhe
to evaluate.

Problems such as aerodynamic optimisation and electromagnetic simuégan
rely on finite element methods in order to simulate the systems of int@tesse sim-
ulations can take from seconds to hours to run. The better the resoéarib fidelity
required, the longer the simulation time.

Many of the problems are highly multi-modal and so gradient based etisndo
not perform well. Unfortunately, with long simulation times, eitlsenall population
sizes must be used within an evolutionary algorithm, or the alguaritiust be run for
a reduced number of generations in order to keep the total processing tinie nea-
sonable bounds. In both gradient based searches and evolutionaryhatgor@very
iteration or generation, the results of previous objective calculatoasliscarded to
reduce processing and storage costs.

For example, a simple aerodynamic simulation takes 10 variables, protuzes
objectives and one constraint, and requires 1 hour per evaluation. Artievalry algo-
rithm with a population of 20 for 100 generations would take over®ado complete.
With some multi-objective algorithms (e.g. NSGA and MOGA) only&iints on the
Pareto surface could be generated per generation. Algorithms such as SPE&nwit
external store for the Pareto set could retain more points. A Paretcsusould need
to be generated from every point that was evaluated in the run of thetievalty al-
gorithm to make sure that no points had been lost. To confine thegmnaiol a more



realistic time scale, only about 500 points could be generated, takingy 2dathys to
complete. Generating only 500 evaluations is equivalent to a popul&ti?@ for 25
generations only, not much for many evolutionary multi-objectiveénoigation algo-
rithms.

This paper proposes a new algorithm that is designed specifically toderowoh-
trollable exploration and exploitation, but with few objective cédtions. The new al-
gorithm uses many of the techniques developed for multi-objectiveitgwoary al-
gorithms to guide the search process. The algorithm is not generatiowalver and
utilises all the objective calculations made when deciding where to placeiti@oint
in the hypercube that defines the search space.

This paper describes two approaches to implementing the idealised algdrtiem
first uses Voronoi decomposition to locate the exact centre of the lagesty hyper-
sphere in each case, but is computationally expensive for even moderatersushb
variables. The second algorithm is the prime focus of the paper and usay bpace
subdivision to approximate the unexplored regions, producifagt@r and more scal-
able algorithm.

Section 2 describes the ideal search algorithm, section 3 discusses nedtivab
optimisation, section 4 details one approach to implementing the ideaiithlg us-
ing Voronoi diagrams and section 5 details an alternative implementatiog ai-
nary search. Section 6 describes the two multi-objective test functieds ssction 7
presents results of the optimisation trials and a comparison withieatyevolutionary
approach, and section 8 concludes.

2 Theldeal Algorithm

2.1 Introduction
The idealised algorithm is:

1. Exploration: Next point is the centre of the largest empty convex region.
2. Exploitation: Next point is the centre of the largest empty convex region that has
a selectedjood point at one edge.

The aim of the idealised algorithm is to reduce the size of unexploggdrs, re-
sulting in uniform search coverage, while still being able to focus eratieas forming
the Pareto surface. With only a limited number of function evaluativasable, every
evaluation must count.

2.2 Exploration

The exploration search step of the algorithm identifies the most loedpregion of
the search hypercube, and places the next point at the centre of the rewgaregion
could be described in a number of ways, the ideal being to find the largegtxcon
region that will reside between the existing evaluation points. Sest# & 5 describe
two alternative methods for approximating the most unexplorednegi



2.3 Exploitation

The exploitation step involves first identifying a good pointbisth algorithm imple-
mentations presented in this paper, tournament selection is used toyidagutifd point
for a localised search to begin from. Once a point has been selected, the largest
plored volume that contains the point at its edge is identified, and aemalation
generated for the point corresponding to the centre of the volume.

2.4 Exploration versus Exploitation

The two phases of the algorithm, exploration and exploitation triesontrolled in
order to provide effective coverage of the decision space. The algorittatiragin with
an exploration phase to allow interesting regions to be identified, the exploitation
phase can be applied to refine the regions. As noted in most evolytiaigarithms, it
is wise to always have a low level of exploration, even in the exgioin phase.

In evolutionary algorithms, the initial population provides@exploration. The se-
lective pressure and crossover in subsequent generations providéagqripwith a
low level mutation providing exploration of the decision spaceubfmut the remain-
ing optimisation process.
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Fig. 1. Probability of performing exploration for C=0.1, K=03,= 0.1 and 1000 trials.

In both the algorithms presented, at each iteration the decision of whetper-t
form exploration or exploitation is made based on a probabilityibistion, P(n), that
varies with the number of function evaluations,The distribution is detailed in (1) and
illustrated graphically in Fig.1. In (1) is the minimum probability of performing an
exploration stepg is the rate at which the probability of exploration decays (smaller
gives faster decay), K is the mid point of the decay (midpoint of the r§@gt]) and
n, is the maximum number of trials that are to be performed. Note, in Higi% not
zero and so the point marked f&rdoes not occur at 300 as would be the cage # 0.
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3 Multi-Objective Optimisation

Much research has been performed on discriminating between members of a Pareto
set to allow the entire Pareto set to be approximated in a single run ebéutienary
algorithm. In an evolutionary algorithm, the Pareto set may either bietaiaed within
the base population (NSGA, MOGA, etc.) or externally (SPEA, PAES)[&1. For the
methods that use the population to store the set, a large popusi®is required to
provide sufficient sampling of the Pareto surface.

A Pareto ranking method is required to allow ‘good’ solutions to beseholn the
algorithms described in this paper, with the small number of evaluatisedall the
points generated in the run of the optimiser will be used to create thkHareto sur-
face. Methods that do not maintain an external store of the Pareto set waidaein
the examples as at each iteration of the algorithm, all the points thafysgscon-
straints created so far will be accounted for. If larger numbers of evalisagiento be
performed, only the solutions in the current tournament set need tmked. This ap-
proach will lead to reduced performance, but the processing overhead of thighahgo
will scale better with increasing function evaluations.

4 Voronoi Optimisation Algorithm

4.1 Largest Empty Convex Region

The idealised algorithm in section 2 relies on being able to identifydtgekt empty
convex region either in the entire search space, or with a chosen poinedggs Fig-
ure 2 shows a 2D Euclidean plane representation of the largest empty cegiex
between a set of points in the decision space. The region may be approxbwditedt

ing the largest empty hypersphere that can be placed between the existitgy pbie
new point would then be generated at the centre of the hypersphere.gihdinentre
of the largest empty hypersphere is still not a trivial problem tgesol
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Fig. 2. Largest empty hypersphere



4.2 Voronoi Diagrams

The Voronoi diagram [2, 3] can be used to identify the centre of the largest empty hy-
persphere. A typical Voronoi Diagram is shown in Fig. 3 with the largespty circle
indicated. The centre of the largest empty circle will always coincide witheeia
\Voronoi vertex, or a vertex generated by the intersection of the Vordiagram with

the convex hull of the set of points.
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Fig.3. Example Voronoi diagram showing how centre of largest enfpytyersphere lies at a
\oronoi vertex

The Voronoi diagram divides a hyperspace containing points intomsgeach re-
gion surrounding a single point. The space is divided so each goagsiociated with
the region of space closest to it./f = py,ps, . .., p, IS @ set of points (osites) in the
2D Euclidean plane, the plane is partitioned by assigning every padihgiplane to its
nearest site. All those points assignegidorm the Voronoi regior?’ (p;).

Vpi) ={z:|pi — 2| <|p; —=|,Vj # i} 2)

The Voronoi diagram is formed as the boundaries of the set of Voragidoms. The
Voronoi edges are points on the plane that lie on the boundaries dfotfoeoi re-

gions and will be by definition equidistant from two sites. A Vorowertex is formed
at the junction of multiple Voronoi edges. The generation of Vorai@agrams is com-
putationally expensive and so direct use is only really possiblerfdsiems with low-

dimensionality. Indirect calculation of the Voronoi diagram is stilg but can lead to
useful optimisation systems [4].

In all the optimisation algorithms used in this paper, the full rarajéise parameter
optimisation in each dimension are mapped into a hypercube with each sidg tiee
limits of [0,1]. This mapping scales each of the parameters with respeatitanimi-
mum and maximum values, allowing unbiased Euclidean distances to be calculated.



To simplify the processing for finding the largest empty hyperspheint is
placed at each corner of the hypercube in the decision space, simplifying thiatiafcu
of the intersection of the Voronoi diagram with the convex hull & floints. The next
point is then placed uniformly at random within the hypercube, allovieg\Voronoi
diagram to be generated and the optimisation process to begin. Withiem&éfAgional
problem, the hypercube has 1024 corners, therefore 1025 points eu&tjuired in
the initial sampling of the decision space. In practice, for many engineprotgems
that are to be optimised on a single processor, the direct Voronobagipis limited
to problems with less than 10 dimensions due to a rapid expansiomgiutational
complexity with increasing dimensionality. With multiple processthe objective cal-
culations and calculation of the Voronoi diagram can be ‘farmed’ out to ¢x¢ free
processor, or a slightly sub-optimal approach can be used of generatimgjlesst of
points, one for each processor, from each Voronoi diagram.

5 Binary Search Algorithm

Although the Voronoi approach gives a very neat and near optimal algqtittencom-
putational complexity for high dimensionality problems is immense.alternative
strategy has been developed that uses a binary search tree [5] to dividartie space
into empty regions, allowing the largest empty region to be appratéd. The search
tree is constructed as shown in Fig. 4 by generating a point within theechhyper-
cube, then dividing the hypercube along the dimension that yields tis¢ ‘oube-like’
subspaces. The definition of ‘cube-like’ is the split that minimisgsy®iered,.x is
the maximum side length of the sides of the two subspaces, and cordasglgal,.,;,,

is the overall shortest side length.

C — dmax (3)

Fig. 4. Binary search process

The ideal algorithm in section 2 has been modified for the binary search tree th



1. Exploration: Next point is generated within the largest empty region,
2. Exploitation: Next point is generated within the largest empty region that is within
a small distance of a selectgdod point.

When the region with the largest area is identified for exploitatiqugiat is gen-
erated at random that lies within the bounds of the region. For thisrp#ge point
is generated with a normal distribution about the mean of the regioniaesch di-
mension. The normal distribution is scaled so that each dimension oédien is+4
standard deviations wide.

The identification of a local region for exploitation is illustratedFig. 4. A small
offset distancel,, is used to generate a hypercube of interest about the chosen point
(chosen with tournament selection). The small hypercube is placed aroeimmbitht
of interest simply to provide an efficient means of identifying neighitmguregions. A
new point is then generated at random using a normal distributioreitatbest region
that intersects the hypercube. For a regibto intersect the hypercube about the point
P, (4) &(5) must not be satisfied for any dimensiomhereA;, andA;,, are the lower
and upper extents of regiofiin dimensioni.

AiL > P+ dp (4)
Aiy < Pi—d, (5)

As the tree is traversed, the subspaces of the higher order nodes (sagubpgpace of
node 2, marked with a cross in Fig. 4 for example) are also tested. lfibgpace fails,
all the child nodes of the subspace can be ignored.

At each iteration, the tree search to find the largest empty region is at@rst),
wheren is the number of evaluation points so far amdis the number of dimen-
sions. The tree pruning can lead @&(mlog(n)) performance for exploitation, and
at worstO(mn). Thus the computational explosion associated with the Voronoi ap-
proach is avoided. Overall, the computational complexity for the pisaarch is at
worst O(mn,*) if a Pareto ranking method @b (n?) is used to rank all the points.
If only the members of the tournament are ranked, the computational egityplvill
be betweerO(mlog(n)?) andO(mn?), depending on how much exploitation is per-
formed.

6 Test Functions

For the trials in this paper, two multi-objective test functionsehbeen used. The test
functions both have concave Pareto sets, with one also being discoumginBoth test
functions are detailed in [6] and are given in (6) and (7). It should kedhat for (7),
the decision space and objective space are co-located, with the Pareto seeffieind d
by the intersection of two constraint boundaries. Thus points can appibarobjective
space on the lower side of the Pareto set, but these points violatertbieaints and as
such are not acceptable.



Oy =1—exp (_Z:; (xﬁ%f)

(2

~2<w; <2 )
O =z
O =y

0> —(37)2 —(Z/)2 +1+0.1cos <16 arctan<§>>

0.5 > (z —0.5)% + (y — 0.5)*
0<z,y<l1 7

7 Experimental Results

Both of the optimisation algorithms described in the paper have bédadron the
two test functions. For comparison, a typical multi-objective etiohary strategy has
been used, and constrained to generate the same number of sample poihtarée al
algorithms, NSGA [1] has been used at each iteration (and correspondingisagien
for the evolutionary strategy) to perform the Pareto ranking ofdbective values
generated so far that meet all the constraints. Only the Pareto ranking eleff¢SGA
are required for the Voronoi and binary algorithms. The sagg.. = 0.05 has been
used for consistency. The ranking algorithm of NSGA is well suitetiédvVoronoi and
binary search techniques as the Pareto set is held within the ‘populagiog tanked.
Alternative methods based on SPEA, PAES [1] are less well suited tagplgation as
they rely on holding the Pareto set externally. However, althougAStrld PAES have
been demonstrated to out perform NSGA on many optimisation probleres wéed
in an evolutionary algorithm, they still search with objective calcalatiistributions
very similar to NSGA. Thus in this trial, only the point generationgess is different
for each of the algorithms, demonstrating how the point disttilouis controlled in the
new algorithms to give a much wider search with fewer unexploredmegio

The evolutionary strategy had a population of 20 and ran for 24 geoesatiiving
a total of 500 evaluations (including the initial population). A €sover rate of 0.7
was used with real-valued intermediate crossover. The initial standaiatidevof the
mutations was set to one eighth of the range of each parameter, and then alowed t
adapt during the run.

For the Voronoi and binary search optimisation, a total of 500 poiete generated,
with the exploration and exploitation parameters sét'te- 0.04, C = 0.02& o = 0.1
and a tournament size of 10. For the binary search optimisation, theegllitation
hypercube was set to Be0.02 in each normalised dimension.

Figures 5 & 6 show the objective and decision space for (6), the firstuestion
and Voronoi optimisation. In Fig. 6 the regular pattern outsidehef region of the
optima is very clear, demonstrating well controlled and uniform exion. The tight
clustering around the centre of the plot corresponds to the Pareto saeamdgloitation
phase of the algorithm.
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Fig. 5. Objective space for equation 6 and Voronoi Optimisation

Fig. 6. Decision space for equation 6 and Voronoi Optimisation

Figures 7 & 8 show the objective and decision space for (7), the secoffidrtegon
and for Voronoi optimisation. Again, the regular pattern, createchdutie exploration
phases, outside of the region of the optima is very clear in Fig. 81ight clustering in
the lower left corner of the plot corresponds to the Pareto set and thwtakipn phase
of the algorithm. The non-convex and discontinuous Pareto set is nl#z plot. The



light coloured points also indicate the region of the plot which isst@ined. It is
interesting to note that the boundary between the constrained and faagiioles that
form the Pareto set has been explored in detail, providing an accurate apatioxi to
the Pareto set.
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Fig. 8. Decision and Objective space for equation 7 and Voronoir@ipétion



Figures 9 & 10 show the objective and decision space for (6) and binary search
optimisation. The regular pattern outside of the region of thavapis not quite as clear
as with the Voronoi approach, but is still well defined and demonstratasteoied and
uniform exploration. Again we see a tight clustering around the eaftihe plot which
corresponds to the Pareto set and the exploitation phase of the lahgorit
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Fig. 9. Objective space for equation 6 and Binary Optimisation

Figures 11 & 12 show the objective and decision space for (7) and binarghsear
optimisation. Again, the exploration pattern outside of theorgif the optima is clear
with most of the unexplored regions being of a similar size. Tha titustering in the
lower left corner of the plot again corresponds to the Pareto set and thatatipn
phase of the algorithm. The non-convex and discontinuous Parets skdar in the
plot. The light coloured points indicating the region of the phgtich is constrained
also show that the regions that form the Pareto set have been explaietiin

Figures 13 & 14 show the objective and decision space for (6) and optioris
using a multi-objective evolutionary strategy. There is no regpéttern outside of the
region of the optima and there are some large unexplored areas negr tidtte plot.
This demonstrates that the exploration is not as controlled or asrom¥fith the low
number of sample points used in the experiment. Again we see a clgsaeound the
centre of the plot which corresponds to the Pareto set and the exjloipdtase of the
algorithm, but here the cluster is very loose and ill-defined.

Figure 15 shows the objective / decision space for (7) optimisedthdtlevolution-
ary strategy. The exploration pattern away from the Pareto set is cledrabuarge
unexplored regions. The Pareto set is patchy and the constrainediretiieriower left
corner has been searched more heavily than the other constrained regiomd,ibw
controlled way near the Pareto set. This bias in part due to the performaN&GA.
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Fig. 10. Decision space for equation 6 and Binary Optimisation
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Fig. 11. Decision and Objective space for equation 7 and Binary Qgéition

The location of the Pareto set is not as accurate and well defined as with either the
Voronoi or binary search optimisation algorithms.

To quantify the ability of the algorithms to identify points oretPPareto set, 100
trials of each algorithm for each objective were performed and the numbestofadi
points on the final non-dominated set recorded. Table 1 shows that t@dimp-
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Fig. 13. Objective space for equation 6 and Evolutionary Strategy

timisation algorithm is by far the most effective at identifying ndominated points,
with the binary search algorithm a close second. Experiments have also dat the

algorithms are well suited to problems where upl€g000 points or more are to be
generated.



151 . . . . E

0.5

Fig. 14. Decision space for equation 6 and Evolutionary Strategy

0.8~ b

0.6~ : B
0.5} - B
04 ot ]
0.3+

o | — ol ! 1 ! | 1 ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

01 K J‘
|
1

Fig. 15. Decision and Objective space for equation 7 and EvolutioSarategy

8 Conclusions

This paper has introduced the concept of a new idealised search algorithmand tw
methods for approximating it, for problems where very few objectiveutations can
be performed. The results have shown that both the Voronoi andybssarch ap-



Table 1. Number of distinct points on Pareto set over 100 trials.

Algorithm Function Minimum Mean Maximumo

\oronoi (6) 170 1949 221 105
Binary (6) 147 1700 174 6.7

ES (6) 74 98.4 122 113
\oronoi (7) 56 65.9 75 3.6
Binary (7) 13 28.8 37 4.2
ES () 8 17.2 27 3.9

proach allow full, independent control over the exploration and etqilon phases of
the search. The exploration phase is designed to give uniform covefrdge search
volume by targeting unexplored areas directly. The exploitation phaes uniform

coverage in ‘good’ areas by targeting unexplored regions close tosptbiat perform
well. The algorithms exploit multi-objective techniques developedf/olutionary al-

gorithms and can handle multiple objectives and constraints easily dbigmms with

multiple variables.

The research has also shown that for problems with very few parametersytr®V
search algorithm performs the best when compared to the binary searchsagitmi
and a typical evolutionary solution. The computational complexityréases rapidly
though for the Voronoi approach when the number of variables is incredbkedbi-
nary approach scales linearly with an increasing number of dimensions, radltavge
problems to be tackled. The research demonstrates how the two new aigoeitploit
the information from all the evaluations performed to give much nstmgcture to the
location of trial points when compared to a typical evolutionary approach.
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